Skip to main content
Log in

Peculiarities of Pycnoporus species for applications in biotechnology

  • Mini-review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The genus Pycnoporus forms a cosmopolitan group of four species belonging to the polyporoid white-rot fungi, the most representative group of homobasidiomycetes causing wood decay. Pycnoporus fungi are listed as food- and cosmetic-grade microorganisms and emerged in the early 1990s as a genus whose biochemistry, biodegradation and biotechnological properties have since been progressively detailed. First highlighted for their original metabolic pathways involved in the functionalization of plant cell wall aromatic compounds to yield high-value molecules, e.g. aromas and antioxidants, the Pycnoporus species were later explored for their potential to produce various enzymes of industrial interest, such as hydrolases and oxidases. However, the most noteworthy feature of the genus Pycnoporus is its ability to overproduce high redox potential laccase—a multi-copper extracellular phenoloxidase—as the predominant ligninolytic enzyme. A major potential use of the Pycnoporus fungi is thus to harness their laccases for various applications such as the bioconversion of agricultural by-products and raw plant materials into valuable products, the biopulping and biobleaching of paper pulp and the biodegradation of organopollutants, xenobiotics and industrial contaminants. All the studies performed in the last decade show the genus Pycnoporus to be a strong contender for white biotechnology. In this review, we describe the properties of Pycnoporus fungi in relation to their biotechnological applications and potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Phylum Basidiomycota order Aphyllophorales, polypores, Chantharelles, tooth fungi, coral fungi and corticioids. In: Harris D (ed) Introductory Mycology, 4th edn. New York, USA, Wiley and sons Inc, pp 563–597

    Google Scholar 

  • Alves Garcia T, Fontes Santiago M, José Ulhoa C (2006) Properties of laccases produced by Pycnoporus sanguineus induced by 2,5-xylidine. Biotechnol Lett 28:633–636

    Article  CAS  Google Scholar 

  • Alves Garcia T, Fontes Santiago M, José Ulhoa C (2007) Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography. Appl Microbiol Biotechnol 75:311–318

    Article  CAS  Google Scholar 

  • Alves AMCR, Record E, Lomascolo A, Sigoillot J-C, Asther M, Wosten H (2005) Method for overproducing a specific recombinant protein with P. cinnabarinus monokaryotic strains. European patent WO2005073381

  • Alves A, Record E, Lomascolo A, Scholtmeijer K, Asther M, Wessels JGH, Wosten HAB (2004) Highly efficient production of laccase in the basidiomycete Pycnoporus cinnabarinus. Appl Env Microbiol 70:6379–6384.

    Article  CAS  Google Scholar 

  • Antorini M, Herpoël-Gimbert I, Choinowski T, Sigoillot JC, AstherM WK, Piontek K (2002) Purification, crystallisation and X-ray diffraction study of fully functional laccases from two lignolytic fungi. Biochim Biophys Acta 1594:109–114

    Article  CAS  Google Scholar 

  • Asther M, Lomascolo A, Mi A, Moukha S, Lesage-Meessen L (1998) Metabolic pathways of biotransformation and biosynthesis of aromatic compounds for the flavour industry by the basidiomycete Pycnoporus cinnabarinus. Mycologia Neotropical Aplicada 11:69–76

    Google Scholar 

  • Azila YY, Mashitah MD, Bhatia S (2008) Process optimization studies of lead (Pb(II)) biosorption onto immobilizs cells of Pycnoporus sanguineus using response surface methodology. Bioresour Technol 99:8549–8552

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Bermek H, Li H, Eriksson KEL (1998) Laccase-less mutants of the white-rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulp. J Biotechnol 66:117–124

    Article  CAS  Google Scholar 

  • Bernard O, Bastin G, Stentelaire C, Lesage-Meessen L, Asther M (1999) Mass balance modelling of vanillin production from vanillic acid by cultures of the fungus Pycnoporus cinnabarinus in bioreactors. Biotechnol Bioeng 65:558–571

    Article  CAS  Google Scholar 

  • Berrio J, Plou FJ, Ballesteros A, Martinez AT, Martinez MJ (2007) Immobilization of Pycnoporus coccineus laccase on Eupergit C: stabilization and treatment of olive oil mill wastewaters. Biocatal Biotransform 25:130–134

    Article  CAS  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 …5.1 million species ? Am J Bot 98:426–438

    Article  Google Scholar 

  • Bonnin E, Lesage-Meessen L, Asther M, Thibault J-F (1999) Enhanced bioconversion of ferulic acid into vanillin by the use of natural cellobiose. J Sci Food Agric 79:484–486

    Article  CAS  Google Scholar 

  • Bonnin E, Lesage-Meessen L, Stentelaire C, Asther M, Thibault J-F (2000) Method for obtaining dollar I (A. niger) cultures and their uses for producing ferulic acid and vanillic acid. European Patent EP1171574

  • Bonnin E, Saulnier L, Brunel M, Marot C, Lesage-Meessen L, Asther M, Thibault JF (2002) Release of ferulic acid from agroindustrial by-products by the cell wall-degrading enzymes produced by Aspergillus niger I-1472. Enzyme Microb Technol 31:1000–1005.

    Article  CAS  Google Scholar 

  • Camarero S, Garcia O, Vidal T, Colom J, del Rio CJ, Gutierrez AM, Gras J, Monje R, Martinez MJ, Martinez AT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120

    Article  CAS  Google Scholar 

  • Camarero S, Ibarra D, Martinez MJ, Martinez A (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  CAS  Google Scholar 

  • Camarero S, Canas AI, Nousiainen P, Record E, Lomascolo A, Martinez MJ, Martinez AT (2008) p-hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703–6709

    Article  CAS  Google Scholar 

  • Correa E, Cardona D, Quinones W, Torres F, Franco AE, Vélez ID, Robledo S, Echeverri F (2006) Leishmanicidal activity of Pycnoporus sanguineus. Phytotherap Res 20:497–499

    Article  CAS  Google Scholar 

  • Dantan-Gonzalez E, Vite-Vallejo O, Martinez-Anaya C, Mendez-Sanchez M, Gonsalez MC, Palomares LA, Mallol JF (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol 11:163–169

    CAS  Google Scholar 

  • De Almeida Siqueira EM, Mizuta K, Giglio JR (1997) Pycnoporus sanguineus: a novel source of α-amylase. Mycol Res 2:188–190

    Article  Google Scholar 

  • De Wilde C, Uzan E, Zhou Z, Kruus K, Andberg M, Buchert J, Record E, Asther M, Lomascolo A (2008) Transgenic rice as novel production system for Melanocarpus and Pycnoporus laccases. Transgenic Res 17:515–527

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson KEL (1995) Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 376:202–206

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996a) The lignolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    CAS  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson KEL (1996b) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson KEL (1997) Laccase is essential for lignin dégradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89–92

    Article  CAS  Google Scholar 

  • Eggert C, Lafayette P, Temp U, Eriksson K-EL, Dean JFD (1998) Molecular analysis of a laccase gene from the white-rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 6:1766–1772

    Google Scholar 

  • Esposito E, Innocentini-Mei LH, Ferraz A, Canhos VP, Duran N (1993) Phenoloxidases and hydrolases from Pycnoporus sanguineus (UEC-2050 strain): applications. J Biotechnol 29:219–228

    Article  CAS  Google Scholar 

  • Estrada Alvarado I, Lomascolo A, Navarro D, Delattre M, Asther M, Lesage-Meessen L (2001) Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus. Appl Microbiol Biotechnol 57:725–730

    Article  CAS  Google Scholar 

  • Estrada Alvarado I, Navarro D, Record E, Mi A, Asther M (2003) Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: an alternative for producing a strong natural antioxidant. World J Microbiol Biotechnol 19:157–160

    Article  CAS  Google Scholar 

  • Eugenio ME, Carbajo JM, Martin JA, Gonzalez AE, Villar JC (2009) Laccase production by Pycnoporus sanguineus under different culture conditions. J Basic Microbiol 49:433–440

    Article  CAS  Google Scholar 

  • Eugenio ME, Santos SM, Carbajo JM, Martin JA, Martin-Sampedro R, Gonzales AE, Villar JC (2010) Kraft pulp biobleaching using an extracellular enzymatic fluid produced by Pycnoporus sanguineus. Bioresour Technol 101:1866–1870

    Article  CAS  Google Scholar 

  • Falconnier B, Lapierre C, Lesage-Meessen L, Yonnet G, Brunerie P, Colonna Ceccaldi B, Corrieu G, Asther M (1994) Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways. J Biotechnology 37:123–132

    Article  CAS  Google Scholar 

  • Figueroa-Espinoza MC, Rouau X (1998) Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans. Cereal Chem 75:259–265

    Article  CAS  Google Scholar 

  • Geng X, Li K (2002) Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Appl Microbiol Biotechnol 60:342–346

    Article  CAS  Google Scholar 

  • Georis J, Lomascolo A, Camarero S, Dorgeo V, Herpoël I, Asther M, Martinez AT, Dauvrin T (2003) Pycnoporus cinnabarinus laccases: an interesting tool for food applications. Commun Agric Appl Biol Sci 68:263–266

    CAS  Google Scholar 

  • Gomez-Alarcon G, Saiz-Jimenez C, Lahoz R (1989) Influence of tween 80 on the secretion od some enzymes in stationary cultures of the white-rot fungus Pycnoporus cinnabarinus. Microbios 60:183–192

    CAS  Google Scholar 

  • Gross B, Yonnet G, Picque D, Brunerie P, Corrieu G, Asther M (1990) Production of methylanthranilate by the basidiomycete Pycnoporus cinnabarinus (Karst). Appl Microbiol Biotechnol 34:387–391

    Article  CAS  Google Scholar 

  • Gross B, Asther M, Corrieu G, Brunerie P (1991) Production de vanilline par bioconversion de précurseurs benzéniques. European Patent no. 0453368A

  • Gupta R, Mehta G, Pal Khasa Y, Chander Kuhad R (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22:797–804

    Article  CAS  Google Scholar 

  • Hahn V, Mikolash A, Wende K, Bartrow H, Lindequist U, Schauer F (2010) Derivatization of the azloe I-aminobenzotriazole using laccase of Pycnoporus cinnabarinus and Myceliophtora thermophila: influence of methanol on the reaction and biological evaluation of the derivative. Biotechnol Appl Biochem 56:43–48

    Article  CAS  Google Scholar 

  • Halaouli S, Mi A, Kruus K, Guo L, Hamdi M, Sigoillot J-C, Asther M, Lomascolo A (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol 98:332–343

    Article  CAS  Google Scholar 

  • Halaouli S, Asther M, Sigoillot J-C, Hamdi M, Lomascolo A (2006a) A review. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering, and biotechnological applications. J Appl Microbiol 100:219–232

    Article  CAS  Google Scholar 

  • Halaouli S, Record E, Casalot L, Hamdi M, Sigoillot J-C, Asther M, Lomascolo A (2006b) Cloning and characterization of a tyrosinase gene from the white-rot fungus Pycnoporus sanguineus, and overproduction of the recombinant protein in Aspergillus niger. Appl Microbiol Biotechnol 70:580–589

    Article  CAS  Google Scholar 

  • Herpoël I, Moukha S, Lesage-Meessen L, Sigoillot C, Asther M (2000) Selection of Pycnoporus cinnabarinus strains for laccase production. FEMS Microbiol Lett 183:301–306

    Article  Google Scholar 

  • Herpoël I, Jeller H, Fang G, Petit-Conil M, Bourbonnais R, Robert J-L, Asther M, Sigoillot J-C (2002) Efficient enzymatic delignification of wheat straw pulp by a sequential xylanase-laccase treatment. J Pulp Paper Sci 28:67–71

    Google Scholar 

  • Hirono E, Zancan GT, Amaral D (1978) Glucose metabolism in Pycnoporus cinnabarinus. Can J Microbio 24:620–622

    Article  CAS  Google Scholar 

  • Holler JR, Brooks JC (1980) Nutritional studies of Pycnoporus cinnabarinus. Mycologia 72:329–337

    Article  CAS  Google Scholar 

  • Hoshida H, Fujita T, Murata K, Kubo K, Akada R (2005) Copper-dependent production of Pycnoporus coccineus extracellular laccase in Aspergillus oryzae and Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69:1090–1097

    Article  CAS  Google Scholar 

  • Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol 66:4157–4160

    Article  CAS  Google Scholar 

  • Ichishima E, Kumagai H, Tomoda K (1980) Substrate specificity of carboxyl proteinase from P. coccineus, a wood-deteriorating fungus. Current Microbiol 3:333–337

    Article  CAS  Google Scholar 

  • Ichishima E, Yoshimura K, Tomoda K (1983) Acid carboxypeptidase from a wood-deteriorating basidiomycete, Pycnoporus sanguineus. Phytochem 22:825–829

    Article  CAS  Google Scholar 

  • Ichishima E, Ito Y, Takeuchi M (1985) 1,2-α-d-Mannosidase drom a wood-rotting basidiomycete, Pycnoporus sanguineus. Phytochem 24:2835–2837

    Article  CAS  Google Scholar 

  • Jaouani A, Sayadi S, Vanthournhout M, Penninckx M (2003) Potent fungi for decolourization of olive oil mill wastewater. Enzyme Microb Technol 33:802–809

    Article  CAS  Google Scholar 

  • Jaouani A, Guillen F, Penninckx MJ, Martinez A, Martinez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb Technol 36:478–486

    Article  CAS  Google Scholar 

  • Jiang D-S, Long S-Y, Huang J, Xiao H-Y, Zhou J-Y (2005) Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem Eng J 25:15–23

    Article  CAS  Google Scholar 

  • Jones CL, Baker WL, lonergan GT (2001) Dimethylsulfoxide elevates extracellular laccase (phenol oxidase) activity of Pycnoporus cinnabarinus grown on a low nutritional newspaper medium. J Chem Technol Biotechnol 76:494–500

    Article  CAS  Google Scholar 

  • Krings U, Hinz M, Berger RG (1996) Degradation of [2H]phenylalanine by the basidiomycete Ischnoderma benzoinum. J Biotechnol 51:123–129.

    Article  CAS  Google Scholar 

  • Krings U, Pilawa S, Theobald C, Berger RG (2001) Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus—elucidation of metabolic pathways using [5-2H]-ferulic acid. J Biotechnol 85:305–314

    Article  CAS  Google Scholar 

  • Kumagai H, Matsue M, Majima E, Tomoda K, Ichishima E (1981) Carboxyl proteinase from the wood deteriorating basidiomycete Pycnoporus coccineus: substrate specificity with oxidized insulin peptide B1 B6 and B15 B24, angiotensin and proangiotensin. Agric Biol Chem 45:981–985

    Article  CAS  Google Scholar 

  • Larking DM, Crawford RJ, Christie GBY, Lonergan GT (1999) Enhanced degradation of polyvinyl alcohol by Pycnoporus cinnabarinus after pretreatment with Fenton’s reagent. Appl Environ Microbiol 65:1798–1800

    CAS  Google Scholar 

  • Lesage-Meessen L, Delattre M, Haon M, Asther M (1995) Method for obtaining vanillic acid and vanillin by bioconversion by an association of filamentous microorganisms. European Patent WO9608576

  • Lesage-Meessen L, Delattre M, Haon M, Thibault J-F, Colonna Ceccaldi B, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50:107–113

    Article  CAS  Google Scholar 

  • Lesage-Meessen L, Haon M, Delattre M, Thibault J-F, Colonna-Ceccaldi B, Asther M (1997) An attempt to channel the transformation of vanillic acid into vanillin by controlling methoxyhydroquinone formation in Pycnoporus cinnabarinus. Appl Microbiol Biotechnol 47:393–397

    Article  CAS  Google Scholar 

  • Lesage-Meessen L, Lomascolo A, Bonnin E, Thibault J-F, Buleon A, Roller M, Mi A, Record E, Colonna Ceccaldi B, Asther M (2002) A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol 102–103:141–153

    Article  Google Scholar 

  • Li K, Horanyi PS, Collins R, Phillips RS, Eriksson KEL (2001) Investigation of the role of 3-hydroxyanthranilic acid in the degradation of lignin by white-rot fungus Pycnoporus cinnabarinus. Enzyme Microbiol Technol 28:301–307

    Article  CAS  Google Scholar 

  • Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01144.x

  • Litthauer D, Jansen van Vuuren M, van Tonder A, Wolfaardt FW (2007) Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SSC 108). Enzyme Microb Technol 40:563–568

    Article  CAS  Google Scholar 

  • Lomascolo A, Lesage-Meessen L, Labat M, Navarro D, Asther M (1999) Enhanced benzaldehyde formation by a monokaryotic strain of Pycnoporus cinnabarinus using a selective solid adsorbent in the culture medium. Can J Microbiol 45:653–657

    CAS  Google Scholar 

  • Lomascolo A, Cayol JL, Roche M, Guo L, Robert JL, Record E, Lesage-Meessen L, Ollivier B, Sigoillot J-C, Asther M (2002) Molecular clustering of Pycnoporus strains from various geographic origins and isolation of monokaryotic strains for laccase hyperproduction. Mycol Res 106:1193–1203

    Article  CAS  Google Scholar 

  • Lomascolo A, Record E, Herpoël-Gimbert I, Delattre M, Robert JL, Georis J, Dauvrin T, Sigoillot JC, Asther M (2003) Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J Appl Microbiol 94:618–624

    Article  CAS  Google Scholar 

  • Lonergan GT, Schliephake K, Jones C, Mainwaring DE (1993) The growth of the white-rot fungus, Pycnoporus cinnabarinus, in a packed-bed bioreactor. Biotechnology 4:239–242

    Google Scholar 

  • Lonergan GT, Panow A, Jones CL, Schliephake K, Ni CJ, Mainwaring DE (1995) Physiological and biodegradative behaviour of the white-rot fungus, Pycnoporus cinnabarinus in a 200 litre packed-bed bioreactor. Biotechnology 5:107–111

    CAS  Google Scholar 

  • Lu L, Zhao M, Zhang B-B, Yu S-Y, Bian X-J, Wang W, Wang Y (2007) Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl Microbiol Biotechnol 74:1232–1239

    Article  CAS  Google Scholar 

  • Mashitah MD, Zulfadhly Z, Bhatia S (1999) Ability of Pycnoporus sanguineus to remove copper ions from acqueous solution. Art Cells Blood Subs Immob Biotech 27:429–433

    Article  CAS  Google Scholar 

  • Mashitah MD, Azila YY, Bhatia S (2008) Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresour Technol 99:4742–4748

    Article  CAS  Google Scholar 

  • Mazdak C, Otterbein L, Chamkha M, Moukha S, Asther M, Gaillardin C, Beckerich J-M (2005) Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res 5:635–646

    Article  CAS  Google Scholar 

  • Meza JC, Sigoillot JC, Lomascolo A, Navarro D, Auria R (2006) New process for fungal delignification of sugar-cane bagasse and simultaneous production of laccase in a vapor phase bioreactor. J Agric Food Chem 54:3852–3858

    Article  CAS  Google Scholar 

  • Micard V, Thibault J-F (1999) Oxidative gelation of sugar-beet pectins: use of laccases and hydration properties of the cross-linked pectins. Carbohydr Polym 39:265–273

    Article  CAS  Google Scholar 

  • Mitsutomi M, Ohtakara A (1988) Isolation and identification of oligosaccharides produced from raffinose by transgalactosylation reaction of thermostable α-galactosidase from Pycnoporus cinnabarinus. Agric Biol Chem 52:2305–2311

    Article  CAS  Google Scholar 

  • Mitsutomi M, Uchida Y, Ohtakara A (1985) Immobilization of thermostable α-galactosidase from Pycnoporus cinnabarinus on chitin and some properties of the immobilized enzme. J Ferment Technol 63:325–329

    CAS  Google Scholar 

  • Mitsutomi M, Honda J, Ohtakara A (1991) Enzymatic synthesis of galactooligosaccharides by the condensation action of thermostable α-galactosidase from Pycnoporus cinnabarinus. Nippon Shokuhin Kogyo Gakkaishi 38:722–728

    Article  CAS  Google Scholar 

  • Molina S, Rencoret J, del Rio JC, Lomascolo A, Record E, Martinez AT, Gutierrez A (2008) Oxidative degradation of model lipids representative for main pulp lipophilic extractives by the laccase-mediator system. Appl Microbiol Biotechnol 80:211–222

    Article  CAS  Google Scholar 

  • Morgenstern I, Robertson DL, Hibbett DS (2010) Characterization of three mnp genes of Fomitiporia mediterranea and report of additional class II peroxidases in the order Hymenochaetales. Appl Env Microbiol 76:6431–6440

    Article  CAS  Google Scholar 

  • Moukha SM, Dumonceaux TJ, Record E, Archibald FS (1999) Cloning and analysis of Pycnoporus cinnabarinus cellobiose dehydrogenase. Gene 234:23–33

    Article  CAS  Google Scholar 

  • Nishizawa Y, Nakabayashi K, Shinagawa E (1995) Purification and characterization of laccase from white-rot fungus Trametes sanguinea M85-2. J Ferment Bioeng 80:91–93

    Article  CAS  Google Scholar 

  • Nobles MK, Frew BP (1962) Studies in wood-inhabiting hymenomycetes. V. The genus Pycnoporus Karst. Can J Bot 40:987–1016

    Article  Google Scholar 

  • Oda Y, Adachi K, Aita I, Ito M, Aso Y, Igarashi H (1991) Purification and properties of laccase excreted by Pycnoporus coccineus. Agric Biol Chem 55:1393–1395

    Article  CAS  Google Scholar 

  • Oddou J, Stentelaire C, Lesage-Meessen L, Asther M, Colonna Ceccaldi B (1999) Improvement of ferulic acid bioconversion into vanillin by use of high-density cultures of Pycnoporus cinnabarinus. Appl Microbiol Biotechnol 53:1–6

    Article  CAS  Google Scholar 

  • Ohtakara A (1988) Chitinase and β-N-Acetylhexosaminidase from Pycnoporus cinnabarinus. Methods Enzymol 161:462–470

    Article  CAS  Google Scholar 

  • Ohtakara A, Mitsutomi M (1987) Immobilization of thermostable α-galactosidase from Pycnoporus cinnabarinus on chitosan beads and is application to the hydrolysis of raffinose in beet sugar molasses. J Ferment Technol 65:493–498

    Article  Google Scholar 

  • Ohtakara A, Yoshida M, Murakami M, Izumi T (1981a) Purification and characterization of β-N-acetylhexosaminidase from Pycnoporus cinnabarinus. Agric Biol Chem 45:239–247

    Article  CAS  Google Scholar 

  • Ohtakara A, Hayashi N, Mitsutomi M (1981b) Purification and some properties of acid β-galactosidase from Pycnoporus cinnabarinus. J Ferment Technol 59:325–328

    CAS  Google Scholar 

  • Ohtakara A, Mitsutomi M, Nakamae E (1982) Mode of hydrolysis of chito-oligosaccharides with Pycnoporus cinnabarinus β-N-acetylhexosaminidase: application of high-performance liquid chromatography. Agric Biol Chem 46:293–295

    Article  CAS  Google Scholar 

  • Ohtakara A, Mitsutomi M, Uchida Y (1984) Purification and enzymatic properties of α-galactosidase from Pycnoporus cinnabarinus. Agric Biol Chem 48:1319–1327

    Article  CAS  Google Scholar 

  • Otterbein L, Record E, Longhi S, Asther M, Moukha S (2000) Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris. Eur J Biochem 267:1619–1625

    Article  CAS  Google Scholar 

  • Pointing SB, Jones EBG, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid cultures. Mycologia 92:139–144

    Article  CAS  Google Scholar 

  • Pointing SB, Pelling AL, Smith JD, Hyde KD, Reddy CA (2005) Screening of basidiomycetes and xylariouceaous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol Res 109:115–124

    Article  CAS  Google Scholar 

  • Quiroga EN, Vattuone MA, Sampietro AR (1995) Purification and characterization of the invertase from Pycnoporus sanguineus. Biochim Biophys Acta 1251:75–80

    Article  Google Scholar 

  • Quiroga EN, Sgariglia MA, Molina CF, Sampietro DR, Soberon JR, Vattuone MA (2009) Purification and characterization of an exo-polygalacturonase from Pycnoporus sanguineus. Mycol Res 113:1404–1410

    Article  CAS  Google Scholar 

  • Quiroz-Castañeda RE, Balcázar-López E, Dantán-Gonzáles E, Martinez A, Folch-Mallol J, Martinez Anaya C (2009) Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electronic J Biotechnol 12:1–8

    Google Scholar 

  • Rama R, Mougin C, Boyer FD, Kollmann A, Malosse C, Sigoillot JC (1998) Biotransformation of benzo[a]pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20:1101–1104

    Article  CAS  Google Scholar 

  • Ravalason H, Herpoel-Gimbert I, Record E, Bertaud F, Grisel S, de Weert S, van den Hondel CAMJJ, Asther M, Petit-Conil M, Sigoillot JC (2009) Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. J Biotechnol 142:220–226

    Article  CAS  Google Scholar 

  • Record E, Punt PJ, Chamkha M, Labat M, van den Hondel CAMJJ, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Romano I, Calandrelli V, Dipasquale L, Nicolaus B, Lama L (2007) Purification and characterization of Pycnoporus sanguineus MUCL38531 laccase expressed in methylotrophic yeast Pichia pastoris. J Biotechnol 131: S120.

    Article  Google Scholar 

  • Ryvarden L (1991) Genera of polypores, nomenclature and taxonomy. Synopsis Fungorum 5. Fungiflora, Oslo

  • Ryvarden L, Gilbertson RL (1994) Meripilus—Tyromyces. European Polypores, part 2. Fungiflora, Oslo

  • Ryvarden L, Johansen I (1980) A preliminary polypore flora of East Africa. Synopsis Fungorum 5. Fungiflora, Oslo

  • Saulnier L, Thibault J-F (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402

    Article  CAS  Google Scholar 

  • Schliephake K, Lonergan GT, Jones CL, Mainwaring DE (1993) Decolourisation of a pigment plant effluent by Pycnoporus cinnabarinus in a packed-bed bioreactor. Biotechnol Lett 15:1185–1188

    Article  CAS  Google Scholar 

  • Schliephake K, Mainwaring DE, Lonergan GT, Jones IK, Baker WL (2000) Transformation and degradation of the disazo dye Chicago Sky Blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microb Biotechnol 27:100–107

    Article  CAS  Google Scholar 

  • Sigoillot JC, Petit-Conil M, Herpoël I, Joseleau JP, Ruel K, Kurek B, de Choudens C, Asther M (2001) Energy saving with fungal enzymatic treatment of industrial poplar alkaline peroxide pulps. Enzyme Microb Technol 29:160–165

    Article  CAS  Google Scholar 

  • Sigoillot C, Lomascolo A, Record E, Robert JL, Asther M, Sigoillot J-C (2002) Lignocellulolytic and hemicellulolytic system of Pycnoporus cinnabarinus: isolation and characterization of a cellobiose dehydrogenase and a new xylanase. Enzyme Microb Technol 31:876–883

    Article  CAS  Google Scholar 

  • Sigoillot C, Record E, Belle V, Robert J-L, Levasseur A, Punt PJ, van den Hondel CAMJJ, Fournel A, Sigoillot J-C, Asther M (2004) Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64:346–352

    Article  CAS  Google Scholar 

  • Smânia A, Delle Monache F, Smânia EFA, Gil ML, Benchetrit LC, Cruz FS (1995) Antibacterial activity of a substance produced by the fungus Pycnoporus sanguineus (Fr.) Murr. J Ethnoparmacol 45:177–181

    Article  Google Scholar 

  • Smânia A, Marques CJS, Smânia EFA, Zanetti CR, Carobrez SG, Tramonte R, Loguercio-Leite C (2003) Toxicity and antiviral activity of cinnabarin obtained from Pycnoporus sanguineus (Fr.) Murr. Phytother Res 17:1069–1072

    Article  CAS  Google Scholar 

  • Stentelaire C, Lesage-Meessen L, Delattre M, Haon M, Sigoillot J-C, Colonna Ceccaldi B, Asther M (1998) By-passing of unwanted vanillyl alcohol formation using selective adsorbents to improve vanillin production with Phanerochaete chrysosporium. World J Microbiol Biotechnol 14:285–287

    Article  CAS  Google Scholar 

  • Stentelaire C, Lesage-Meessen L, Oddou J, Bernard O, Bastin G, Colonna Ceccaldi B, Asther M (2000) Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus. J Biosci Bioeng 89:223–230

    Article  CAS  Google Scholar 

  • Sullivan G, Henry ED (1971) Occurrence and distribution of phenoxazinone pigments in the genus Pycnoporus. J Pharmaceutical Sci 60:1097–1098

    Article  CAS  Google Scholar 

  • Temp U, Zierold U, Eggert C (1999) Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236:169–177

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiol 140:19–26

    Article  CAS  Google Scholar 

  • Trovaslet M, Enaud E, Guiavarc’h Y, Corbisier A-M, Vanhulle S (2007) Potential of a Pycnoporus sanguineus laccase in bioremediation of wastewater and kinetic activation in the presence of an anthraquinonic acid dye. Enzyme Microb Technol 41:368–376

    Article  CAS  Google Scholar 

  • Uzan E, Nousiainen P, Balland V, Sipila J, Piumi F, Navarro D, Asther M, Record E, Lomascolo A (2010) High redox potential laccases from the lignolytic fungi Pycnoporus coccineus and P. sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. J Appl Microbiol 108:2199–2213

    CAS  Google Scholar 

  • Uzan E, Portet B, Lubrano C, Milesi S, Favel A, Lesage-Meessen L, Lomascolo A (2011) Pycnoporus laccase-mediated bioconversion of rutin to oligomers suitable for biotechnology applications. Appl Microbiol Biotechnol 90:97–105

    Article  CAS  Google Scholar 

  • Valeriano VS, Silva AMF, Santiago MF, Bara MTF, Garcia TA (2009) Production of laccase by Pycnoporus sanguineus using 2,5-xylidine and ethanol. Braz J Microbiol 40:790–794

    Article  CAS  Google Scholar 

  • Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2006) Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177

    Article  CAS  Google Scholar 

  • Whang F, Guo C, Liu H-Z, Liu C-Z (2008) Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles. J Chem Technol Biotechnol 83:97–104

    Article  CAS  Google Scholar 

  • Whang Z-X, Cai Y-J, Liao X-R, Tao G-J, Li Y-Y, Zhang F, Zhang D-B (2010) Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Process Biochem 45:1720–1729

    Article  CAS  Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity and stability. Biochim Biophys Acta 1292:303–311

    Article  Google Scholar 

  • Yahaya YA, Mashitah MD, Bhatia S (2009) Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from acqueous solution: equilibrium and kinetic studies. J Hazard Mater 161:189–195

    Article  CAS  Google Scholar 

  • Zheng LR, Zheng P, Sun ZH, Bai YB, Wang J, Guo XF (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Biores Technol 98:1115–1119

    Article  CAS  Google Scholar 

  • Zulfadhly Z, Mashitah MD, Bhatia S (2001) Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut 112:463–470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Commission of the European Communities through the BIORENEW project (NMP2-CT-2006-026456 “White Biotechnology for added-value products from renewable plant polymers: design of tailor-made biocatalysts and new Industrial bioprocesses”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Lomascolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomascolo, A., Uzan-Boukhris, E., Herpoël-Gimbert, I. et al. Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol 92, 1129–1149 (2011). https://doi.org/10.1007/s00253-011-3596-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3596-5

Keywords

Navigation