

Downloaded from https://academic.oup.com/femsle/article/325/1/37/608374 by guest on 24 April 2024

Phylogeographic relationships in the polypore fungus Pycnoporus inferred from molecular data

Laurence Lesage-Meessen¹, Mireille Haon¹, Eva Uzan¹, Anthony Levasseur¹, François Piumi¹, David Navarro¹, Sabine Taussac¹, Anne Favel^{1,2} & Anne Lomascolo^{1,3}

¹INRA, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; ²Université de la Méditerranée, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France; and ³Université de Provence, UMR 1163 de Biotec

Correspondence: Laurence Lesage-Meessen, INRA, UMR1163 de Biotechnologie des Champignons Filamenteux ESIL, 163 avenue de Luminy, CP 925, 13288 Marseille Cedex 09, France. Tel.: +33 491828608; fax: +33 491828601; e-mail: laurence.lesage-meessen@esil.univmed.fr

Received 31 January 2011; revised 17 June 2011; accepted 1 September 2011. Final version published online 3 October 2011.

DOI: 10.1111/j.1574-6968.2011.02412.x

Editor: Nina Gunde-Cimerman

Keywords

Pycnoporus; molecular marker; phylogeny; ITS; β-tubulin; laccase.

Abstract

The genus Pycnoporus forms a group of four species known especially for producing high redox potential laccases suitable for white biotechnology. A sample of 36 Pycnoporus strains originating from different geographical areas was studied to seek informative molecular markers for the typing of new strains in laboratory culture conditions and to analyse the phylogeographic relationships in this cosmopolitan group. ITS1-5.8S-ITS2 ribosomal DNA and partial regions of β-tubulin and laccase lac3-1 gene were sequenced. Phylogenetic trees inferred from these sequences clearly differentiated the group of Pycnoporus cinnabarinus strains from the group of Pycnoporus puniceus strains into strongly supported clades (100% bootstrap value). Molecular clustering based on lac 3-1 sequences enabled the distribution of Pycnoporus sanguineus and Pycnoporus coccineus through four distinct, well supported clades and subclades. A neotropical sub-clade, grouping the P. sanguineus strains from French Guiana and Venezuela, corresponded to P. sanguineus sensu stricto. A paleotropical sub-clade, clustering the strains from Madagascar, Vietnam and New Caledonia, was defined as Pycnoporus cf. sanguineus. The Australian clade corresponded to P. coccineus sensu stricto. The Eastern Asian region clade, clustering the strains from China and Japan, formed a P. coccineus-like group. Laccase gene (lac 3-1) analysis within the Pycnoporus species can highlight enzyme functional diversity associated with biogeographical origin.

Introduction

The genus *Pycnoporus* belongs to the polyporoid whiterot fungi, the most representative group of homobasidiomycetes causing wood decay (Hibbett *et al.*, 2007). *Pycnoporus* is a genus closely related to *Trametes*, being morphologically similar in all characters except for the conspicuous bright reddish-orange colour of the basidiocarp (Ryvarden, 1991; Ryvarden & Gilbertson, 1994). Historically, four species were discerned based on their morphological features (pore size of basidiocarp and basidiospore shape) and their distribution areas (Nobles & Frew, 1962; Ryvarden & Johansen, 1980): (1) *Pycnoporus cinnabarinus*, a common species, distributed especially in the northern hemisphere, (2) *Pycnoporus puniceus*, a rare species known from Africa, India, Malaysia and New Caledonia, and characterized by a basidiocarp with large irregular pores (1–3 per mm), (3) *Pycnoporus sanguineus*, a common species distributed in tropical and subtropical regions, and (4) *Pycnoporus coccineus*, distributed in the countries bordering the Indian and Pacific Oceans. To date, the description and exploration of the *Pycnoporus* diversity has been based mainly on morphological similarity to the type specimen – referenced in international collections – although species delineation remains difficult due to highly variable macro- and micro-morphological characters. In addition, the four species of *Pycnoporus* are very similar, especially those distributed in the tropical areas and, when cultured, the high degree of similarity of their cultural characters hinders their identification.

In recent years, a more precise assessment of identification and diversity of fungi has been achieved using molecular markers including the internal transcribed spacer (ITS) region of nuclear ribosomal DNA, and partial sequences of genes coding for subunits of RNA polymerase, β -tubulin, cellobiohydrolase-C, topoisomerase II and manganese peroxidase (Hatsch *et al.*, 2004; Wang *et al.*, 2004; Froslev *et al.*, 2005; Tomšovský *et al.*, 2006; Hilden *et al.*, 2008).

The Pycnoporus genus is known to produce laccases (p-diphenol : oxygen oxidoreductases, EC 1.10.3.2) (Eggert et al., 1998), which typically are blue copper oxidases responsible for lignin degradation and wood decay, and mmthe decomposition of humic substances in soils (Gianfreda et al., 1999; Baldrian, 2006). Laccases can oxidize a wide range of compounds, including polyphenols, methoxy-substituted phenols, aromatic diamines and environmental pollutants such as industrial dyes, polycyclic aromatic hydrocarbons and pesticides (Herpoël et al., 2002; Sigoillot et al., 2004; Brijwani et al., 2010). A recent study identified the strains P. coccineus MUCL 38523 (from Australia), P. sanguineus IMB W006-2 (from China) and P. sanguineus BRFM 902 (from French Guiana) as outstanding producers of high redox potential laccases, particularly suitable for white biotechnology processes such as lignin biorefinery and cosmetic applications (Uzan et al., 2010, 2011). Accordingly, species of the genus Pycnoporus are now strong contenders for industrial applications, and so require unambiguous identification, especially for typing new strains in laboratory culture conditions.

The aim of this study was to infer phylogenetic relationships among the four species of the genus *Pycnoporus* using sequence data from the ITS region of rDNA and from partial regions of the gene encoding β -tubulin and laccase isoenzyme Lac I. This analysis leads to a discussion about geographical distribution within the *Pycnoporus* genus, with a special focus on the very closely related species *P. coccineus* and *P. sanguineus*.

Materials and methods

Fungal strains

Thirty-six strains obtained from different international collections studied: two strains of *P. puniceus*, five of *P. cinnabarinus*, 25 of *P. sanguineus* and four of *P. coccineus* (Table 1). The strains had various geographic origins: Central/South America (Cuba, Venezuela, French Guiana) (14), Europe (4), South eastern Africa (Madagascar) (1), Eastern Asia (Vietnam, China and Japan) (9), Oceania (Australia, New Caledonia and Solomon Islands) (7); one strain was of unknown origin.

The biological material originating from Venezuela and Vietnam was deposited in our collection, the Inter-

national Centre of Microbial Resources dedicated to Filamentous Fungi (CIRM-CF, Marseille, France) through Deposit Contracts in accordance with the international convention on biological diversity. The strains from French Guiana and French New Caledonia were isolated from specimens collected between 2007 and 2010, which were assigned to P. sanguineus on the basis of morphological features (Ryvarden, 1991; Courtecuisse et al., 1996). The other strains were obtained from International Culture Collections (Table 1). For the species P. sanguineus, P. coccineus, P. cinnabarinus, we designated, as, reference strain, the strain which was isolated from a specimen collected in the same geographic area as that of the original type specimen. The strain CIRM-BRFM 902 originating from French Guiana was designated as reference strain for P. sanguineus (L) Murrill, Surinam (Lamark, 1783), the strain MUCL 39523 originating from Australia for P. coccineus (Fr.) Bondartsev & Singer, Polynesia (Fries, 1851), and the strain MUCL 30555 originating from Belgium for P. cinnabarinus (Jacq.) P. Karst, Europe (Karsten, 1881). The strain of Trametes suaveolens CBS 426.61 was used as an outgroup in phylogenetic analyses.

Molecular analysis

Genomic DNA was isolated from mycelial powder (40-80 mg) as described by Lomascolo et al. (2002). The ITS region was amplified using the ITS1 and ITS4 primers as described by White et al. (1990). The degenerate primers Bsens and Brev were adapted from primers already designed to match a 133-amino-acid conserved region in β -tubulin from *Lentinula* spp. and *Pleurotus* spp. (Thon & Royse, 1999). In our study, β-tubulin gene from Trametes versicolor, Polyporus lepideus, Schizophyllum commune, Coprinus cinereus, and Pleurotus sajor-caju (NCBI accession numbers AY944859, AY944857, X63372, AB000116, AF132911, respectively) were aligned, and primers Bsens [5'-ATCAC(A/T)CACTCIconsensus CTIGGTGGTGG-3'] and Brev [5'-CATGAAGAA(A/G) TGIAGACGIGGG-3'] were designed. The universal genetic code was used. At degenerate positions, if three or four combinations were possible, the base was replaced by an inosine (I); otherwise, the two possible bases were kept. The two degenerate primers F2 [5'-CA(C/T)TGGCA (C/T)GG(A/G)TTCTTCC-3'] and R8 [5'-GAG(A/G) TGGAAGTC(A/G)ATGTG(G/A)C-3'] were designed to match, respectively, the copper-binding domains I and IV, highly conserved in blue copper oxidases such as laccases (Messerschmidt & Huber, 1990). The sequences of F2 and R8 were based on the alignment of the corresponding nucleotide regions of the basidiomycete laccases from P. coccineus, P. sanguineus, Lentinula edodes,

Organal identification Calection number Final Identification Geographic colgnition Inst 15.8.F(T2) P-Tubulin Lac 7.88 Combainins MCL 395577 P combainins Boi of elucrele, toombin-shelves, Bejjunt/nter wood AF3637571 F410357 E108371 E108371 P combainins CIMA BIRM 137 P combainins Boi of elucrele, toombin-shelves, Bejjunt/nter wood AF3637571 F410357 E1083716 E1084163 P combainins MCL 39237 P combainins Res Syntis-Artis-					NCBI accession numbers	umbers	
WUCL 3055' P. cimabarinus Bois de Lauzelle, Louani-A-Neure, Bélgum/rotten wood AF363751 FH10361 6 CIRN-BERM 317 P. cimabarinus RussiadeAdotod F1234206 F410371 6 CIRN-BERM 327 P. cimabarinus RussiadeAdotod F1234206 F410371 6 CIRN-BERM 327 P. cimabarinus RussiadeAdotod F1234206 F410377 6 RUCL 37087 P. prives P. cimabarinus RussiadeAdotod F1234205 F410376 7 RUCL 37087 P. prives P. dirasytimes F104066 F410376 7 RUCL 37087 P. dirasytimes F16100 Kurkuk, Ouectos cubana F1234205 F410376 7 F410376 F410376 F410366 F410356 F410366 7 F410376 F410376 F410366 F410366 F410366 7 F410376 F410367 F410366 F410366 F410366 7 F410376 F410366 F410366 F410366 F410366 7 F410476	Original identification	Collection number*	Final identification	Geographic origin/host	ITS1-5.8S-ITS2	β-Tubulin	Lac F2-R8
c CIRU-BRM 137 <i>C</i> cinabarius Monokayon fron fruit-body of wild strain 1-937 AF363757 ¹ E410360 c CIRU-BRM 137 <i>C</i> cinabarius Monokayon fron fruit-body of wild strain 1-937 AF363768 E410371 c CIRU-BRM 945 <i>P</i> cinabarius Russideadwood E1234205 E410371 s MUCL 47083 <i>P</i> puriceus Afree Springs, Asstaliababedood F1324205 E410377 MUCL 47083 <i>P</i> puriceus Final del Ro, Cubadead fallen trunk, Quercus cubana F1324205 E410377 MUCL 47083 <i>P</i> ci anguineus Tentabate Madagaser, Indan Oceandbackood F1324201 F410377 MUCL 47083 <i>P</i> ci sanguineus Tentabate Madagaser, Indan Oceandbackood F1324201 F410377 MUCL 47083 <i>P</i> ci sanguineus Tench Nach Gadonal/Michofagas codonanda F1324138 F410377 CIRU-BRM 930 <i>P</i> ci sanguineus Tench Nach Gadonal/Michofagas codonanda F1324138 F410355 CIRU-BRM 930 <i>P</i> ci sanguineus Tench Nach Galana/Cutrun Noci F1324138 F410355 CIRU-BRM 930 <i>P</i> ci sanguineus Tench	P. cinnabarinus	MUCL 30555*	P. cinnabarinus	Bois de Lauzelle, Louvain-la-Neuve, Belgium/rotten wood	AF363764 [‡]	FJ410367	EU683258
c CRN-BRFM 327 <i>P. Crinabarinis</i> Russideadwood F10370 c CRN-BRFM 327 <i>P. Crinabarinis</i> Russideadwood F1234205 F1410371 r MUCL. 3420 <i>P. crinabarinis</i> Russideadwood F1323765 F1410365 MUCL. 3703 <i>P. purineus</i> Final del Ro, Cubadead fallen trunk, <i>Quercus cubana</i> F1323765 F1410365 MUCL. 37037 <i>P. purineus</i> Final del Ro, Cubadead fallen trunk, <i>Quercus cubana</i> F1324705 F1410365 MUCL. 23375 <i>P. qurineus</i> Final del Ro, Cubadead fallen trunk, <i>Quercus cubana</i> F1324195 F1410365 CRN-BFRM 932 <i>P. ct sanguineus</i> Danana del Ro, Cubadead fallen trunk, <i>Quercus cubana</i> F1324195 F1410365 CRN-BFRM 930 <i>P. ct sanguineus</i> Downtory, Netrol Novol Ceanofoundadokondol F1324195 F1410365 CRN-BFRM 930 <i>P. ct sanguineus</i> French Guianabruru kof dead palm tree F1324135 F1410345 CRN-BFRM 930 <i>P. ct sanguineus</i> Rockun French Guianabruru kof dead palm tree F1324135 F1410345 CRN-BFRM 930 <i>P. ct sanguineus</i> Rockun French Guianabruru w	P. cinnabarinus	CIRM-BRFM 137 [§]	P. cinnabarinus	Monokaryon from fruit-body of wild strain I-937	AF363757 [‡]	FJ410369	AF170093
c CIRM-BRM 945 <i>P. cinceres</i> Aller Spring, Justralideadvood F1234206 F1410371 r MUCL 47083 <i>P. puriceus</i> Aller Spring, Justralideadvood F1234199 F1410376 MUCL 47083 <i>P. puriceus</i> Plan de Rio, Cubadead fallen tunk, Overcus cubana F1234199 F1410376 MULL 47083 <i>P. puriceus</i> Plan de Rio, Cubadead fallen tunk, Overcus cubana F1234199 F410376 MULL 47083 <i>P. di sanguineus</i> Temata Madagascui, Indian Ocenvideadwood F1234199 F410376 CIRM-BRM 930 <i>P. di sanguineus</i> Temerh We caledonia/Volhndigas coonardra F1234139 F410355 CIRM-BRM 930 <i>P. di sanguineus</i> Tench Nex Gladonia/Volhndigas coonardra F1234203 F410355 CIRM-BRM 930 <i>P. anguineus</i> Tench Nex Gladonia/Volhndigas coonardra F1234139 F410345 CIRM-BRM 930 <i>P. anguineus</i> Tench Nex Gladonia/Volhndigas coonardra F1234139 F410345 CIRM-BRM 930 <i>P. anguineus</i> Tench Nex Gladonia/Volhndigas coonardra F1234139 F410345 CIRM-BRM 930 <i>P. anguineus</i> Tench Nex Gladonia/Volhndi	P. cinnabarinus	CIRM-BRFM 237	P. cinnabarinus	Russia/deadwood	FJ234205	FJ410370	EU684159
s MUCL 384.0 P. corcinus Allee Springs, Australiadead dialen turk, Ouerus cubana F3133761 F110366 MUCL 47083 P. purieeus Pinal del Ro, Cubadead fallen turk, Ouerus cubana F3234196 F410356 MUCL 20375 P. purieeus Pinal del Ro, Cubadead fallen turk, Ouerus cubana F333766 [†] F410366 MUCL 20375 P. qurieeus Pinal del Ro, Cubadead fallen turk, Ouerus cubana F3334766 [†] F410366 MUCL 20375 P. q sanguineus Danang breach, Viennamkood log F3234184 F410366 CIRM-BRIM 932 P. d sanguineus Oventron, New Caledonia/deadwood F1234184 F410347 CIRM-BRIM 930 P. d sanguineus Oventron, New Caledonia/deadwood F1234184 F410341 CIRM-BRIM 930 P. d sanguineus Normon Vew Caledonia/deadwood F1234184 F410341 CIRM-BRIM 930 P. et sanguineus Normon Vew Caledonia/deadwood F1234136 F410341 CIRM-BRIM 930 P. et sanguineus Normon Vew Caledonia/deadwood F1234136 F410341 CIRM-BRIM 930 P. sanguineus Normon Vew Caledonia/deadwood F1234139	P. cinnabarinus	CIRM-BRFM 945	P. cinnabarinus	Castelnau-Durban, France/deadwood	FJ234206	FJ410371	EU714500
MUCL 47083 P. puriceus Pinal de Rio, Cubadead falen tunic, Ouercus cubana F1214198 F110376 MUCL 47087 P. puriceus Pinal de Rio, Cubadead falen tunic, Ouercus cubana F124201 F410356 MUCL 29377 P. puriceus Pinal de Rio, Cubadead falen tunic, Ouercus cubana F124201 F410356 CRM-BERM 939 P. cf sanguineus Danang beach, Vietnam/deadwood F1224201 F410355 CRM-BERM 939 P. cf sanguineus Danang beach, Vietnam/deadwood F1224203 F410355 CRM-BERM 980 P. cf sanguineus Danang beach, Vietnam/deadwood F1224203 F410355 CRM-BERM 983 P. cf sanguineus Concologial Galan/Unich of dead plim tree F1224203 F410343 CRM-BERM 983 P. sanguineus Kowou, French Gulana/Orten wood F1224186 F410343 CRM-BERM 983 P. sanguineus Rowou, French Gulana/Orten wood F1224196 F410343 CRM-BERM 989 P. sanguineus Laussat, French Gulana/Orten wood F1224195 F410343 CRM-BERM 989 P. sanguineus Laussat, French Gulana/Orten wood F1224195 F410343 <td>P. cinnabarinus</td> <td>MUCL 38420</td> <td>P. coccineus</td> <td>Alice Springs, Australia/deadwood</td> <td>AF363768[‡]</td> <td>FJ410368</td> <td>EU684160</td>	P. cinnabarinus	MUCL 38420	P. coccineus	Alice Springs, Australia/deadwood	AF363768 [‡]	FJ410368	EU684160
MUCL 47087 P. puriceus Pinal de Ro, Cubadead falen trunk, Quercus cubana F1234391 F410375 MUCL 47087 P. dr Sanguineus Tamatave Madagascar, Indian Cean/dead/wood F1234301 F410355 CIRM-BERM 932 P. dr Sanguineus Danang baech, Vietnam/koehodyood F1234202 F410355 CIRM-BERM 931 P. dr Sanguineus Nektong delta, Vietnam/koehodyod F1234202 F410355 CIRM-BERM 931 P. dr Sanguineus Nektong delta, Vietnam/koehodyod F1234183 F410355 CIRM-BERM 835 P. argaguineus French New Caledonia/Konhögus coolonandra F1234183 F410355 CIRM-BERM 835 P. sanguineus French Guiana/otten wood F1234185 F410341 CIRM-BERM 835 P. sanguineus French Guiana/otten wood F1234185 F410341 CIRM-BERM 835 P. sanguineus French Guiana/otten wood F1234185 F410341 CIRM-BERM 901 P. sanguineus French Guiana/otten wood F1234185 F410341 CIRM-BERM 903 P. sanguineus French Guiana/otten wood F1234185 F410341 CIRM-BERM 903	P. puniceus	MUCL 47083	P. puniceus	Pinal del Rio, Cuba/dead fallen trunk, Quercus cubana	FJ234198	FJ410376	FJ425895
MUCL 29375 P. et sanguineus Tamatave Madagascar, Indian Ocean/deadwood AF363769 ¹ EM10366 CIRN-BRFM 942 P. et sanguineus Danang baech, Viennan/wood Iog F1234201 F410355 CIRN-BRFM 932 P. et sanguineus Danang baech, Viennan/wood Iog F1234201 F410355 CIRN-BRFM 932 P. et sanguineus Netrong black, Viennan/wood Iog F1234203 F410355 CIRN-BRFM 983 P. et sanguineus Terrch New Caledonia/Nothofigus codonandra F1234185 F4110365 CIRN-BRFM 893 P. sanguineus Kowou, French Guiana/wood F1234185 F4110343 CIRN-BRFM 893 P. sanguineus Nowou, French Guiana/wood F1234185 F4110343 CIRN-BRFM 893 P. sanguineus Nowou, French Guiana/wood F1234185 F4110343 CIRN-BRFM 890 P. sanguineus Nowou, French Guiana/rotten wood F1234187 F410343 CIRN-BRFM 900 P. sanguineus Nacoust, French Guiana/rotten wood F1234191 F4110343 CIRN-BRFM 900 P. sanguineus Nacoust, French Guiana/rotten wood F1234191 F410343 CIR		MUCL 47087	P. puniceus	Pinal del Rio, Cuba/dead fallen trunk, Quercus cubana	FJ234199	FJ410377	FJ425896
CIRN-BRIM 942 P. cf. sanguineus Danang bach, Vietnam/deadwood F1234201 F1410355 CIRN-BRIM 931 P. cf. sanguineus Cf. sanguineus Downtoo, New Caledonia/Northofsgus codonandra F1234203 F1410355 CIRN-BRIM 931 P. cf. sanguineus French New Caledonia/Northofsgus codonandra F1234203 F1410355 CIRN-BRIM 931 P. cf. sanguineus French New Caledonia/Northofsgus codonandra F1234203 F1410355 CIRN-BRIM 931 P. cf. sanguineus French New Caledonia/Northofsgus codonandra F1234203 F1410355 CIRN-BRIM 935 P. sanguineus Kowu Marsh, French Guiana/Jorten wood F1234135 F1410342 CIRN-BRIM 935 P. sanguineus Novou; French Guiana/Jorten wood F1234135 F1410342 CIRN-BRIM 930 P. sanguineus Novou; French Guiana/Jorten wood F1234135 F1410342 CIRN-BRIM 901 P. sanguineus Revol Guiana/Jorten wood F1234193 F1410345 CIRN-BRIM 901 P. sanguineus Revol Guiana/Jorten wood F1234193 F1410346 CIRN-BRIM 901 P. sanguineus Revol Guiana/Jorten wood F1234	P. sanguineus	MUCL 29375	P. cf sanguineus	Tamatave Madagascar, Indian Ocean/deadwood	AF363769 [‡]	FJ410366	EU684158
CIRN-BRFM 943 P. d' sanguineus Mekong delta, Vietnam/wood log F1234202 F410355 CIRN-BRFM 980 P. d' sanguineus Mekong delta, Vietnam/wood log F1234202 F410355 CIRN-BRFM 980 P. d' sanguineus French New Caledonia/Net/nofgas codonandra F1234203 F410355 CIRN-BRFM 981 P. d' sanguineus French New Caledonia/Net/nofgas codonandra F1234185 F410343 CIRN-BRFM 983 P. sanguineus Kowou, French Guiana/rutunk of dead palm tree F1234185 F410343 CIRN-BRFM 985 P. sanguineus Kowou, French Guiana/rutuk of dead palm tree F1234185 F410343 CIRN-BRFM 900 P. sanguineus Rowou, French Guiana/rutuk of dead palm tree F1234185 F410343 CIRN-BRFM 900 P. sanguineus Laussat, French Guiana/rotten wood F1234186 F410343 CIRN-BRFM 901 P. sanguineus Laussat, French Guiana/rotten wood F1234196 F410343 CIRN-BRFM 902 P. sanguineus Rovaeui, French Guiana/rotten wood F1234196 F410343 CIRN-BRFM 903 P. sanguineus Rovaeui French Guiana/rotten wood F1234196	P. sanguineus	CIRM-BRFM 942	P. cf sanguineus	Danang beach, Vietnam/deadwood	FJ234201	FJ410354	FJ232700
CIRN-BRFM 979 P. cf sanguineus Owentoro, New Caledonia/Acacia spriobis F1234184 F410363 CIRN-BRFM 981 P. cf sanguineus French New Caledonia/Acacia spriobis F1234123 F410364 CIRN-BRFM 981 P. cf sanguineus French New Caledonia/Mothofingus codonandra F1234125 F410364 CIRN-BRFM 883 P. sanguineus Kow Mash French Guiana/forthe wood F1234185 F410343 CIRN-BRFM 895 P. sanguineus Kowou, French Guiana/forthe wood F1224185 F410343 CIRN-BRFM 895 P. sanguineus Kowou, French Guiana/forthe wood F1224185 F410344 CIRN-BRFM 900 P. sanguineus Laussat, French Guiana/forthe wood F1224195 F410344 CIRN-BRFM 901 P. sanguineus Laussat, French Guiana/forthe wood F1224195 F410344 CIRN-BRFM 902 P. sanguineus Royale Island, French Guiana/forthe wood F1224195 F410345 CIRN-BRFM 903 P. sanguineus Royale Island, French Guiana/forthe wood F1224195 F410345 CIRN-BRFM 903 P. sanguineus Royale Island, French Guiana/forthen wood F1224195 F41	P. sanguineus	CIRM-BRFM 943	U	Mekong delta, Vietnam/wood log	FJ234202	FJ410355	FJ232701
CIRN-BRFM 980 P. cf sanguineus French New Caledonia/Northofagus codonandra F1234203 F1410365 CIRN-BRFM 981 P. cf sanguineus French New Caledonia/Northofagus codonandra F1234203 F1410345 CIRN-BRFM 893 P. sanguineus Kow Marsh, French Guiana/Fourt F1234185 F1410345 CIRN-BRFM 895 P. sanguineus Kow Marsh, French Guiana/Fourt F1234185 F1410345 CIRN-BRFM 895 P. sanguineus Kow Marsh, French Guiana/Fourt F1234185 F1410343 CIRN-BRFM 896 P. sanguineus Kowu, French Guiana/Fourt Kowoud F1234185 F1410343 CIRN-BRFM 900 P. sanguineus Laussat, French Guiana/Fourt Kowoud F1234195 F1410345 CIRN-BRFM 901 P. sanguineus Sainte Elie, French Guiana/Fourt Kowoud F1234195 F1410345 CIRN-BRFM 902 P. sanguineus Rovola [sland, French Guiana/Fourt Kowoud F1234195 F1410345 CIRN-BRFM 903 P. sanguineus Rovola [sland, French Guiana/Fourt Kowoud F1234195 F1410345 CIRN-BRFM 905 P. sanguineus	P. sanguineus	CIRM-BRFM 979	P. cf sanguineus	Owentoro, New Caledonia/Acacia spirobis	FJ234184	FJ410363	EU714502
CIRM-BRFM 981 <i>P. cf sanguineus</i> French New Caledonia/deadwood F1234204 F410345 CIRM-BRFM 893 <i>P. sanguineus</i> Kow Marsh, French Guiana/dotten wood F1234186 F410343 CIRM-BRFM 893 <i>P. sanguineus</i> Kow Marsh, French Guiana/dotten wood F1234186 F410343 CIRM-BRFM 895 <i>P. sanguineus</i> Paracou, French Guiana/fouten wood F1234187 F410343 CIRM-BRFM 990 <i>P. sanguineus</i> Paracou, French Guiana/fouten wood F1234187 F410344 CIRM-BRFM 900 <i>P. sanguineus</i> Paracou, French Guiana/fouten wood F1234190 F410345 CIRM-BRFM 901 <i>P. sanguineus</i> Laussat, French Guiana/fouten wood F1234190 F410346 CIRM-BRFM 902 <i>P. sanguineus</i> Nacouria, French Guiana/fouten wood F1234190 F410346 CIRM-BRFM 902 <i>P. sanguineus</i> Royale Island, French Guiana/fouten wood F1234193 F410345 CIRM-BRFM 903 <i>P. sanguineus</i> Royale Island, French Guiana/fouten wood F1234193 F410345 CIRM-BRFM 905 <i>P. sanguineus</i> Royale Island, French Guiana/fouten wood F1234193	P. sanguineus	CIRM-BRFM 980	P. cf sanguineus	French New Caledonia/Nothofagus codonandra	FJ234203	FJ410364	EU684161
CIRN-BRFM 892 P. sanguineus Kow Marsh, French Guiana/trunk of dead palm tree FJ.34185 FJ.10342 FJ.10342 CIRN-BRFM 895 P. sanguineus Paracou, French Guiana/rotten wood FJ.24185 FJ410343 FJ.34185 FJ410343 FJ.34185 FJ410343 FJ.34185 FJ410343 FJ.34185 FJ410345 FJ.34185 FJ410345 FJ.34186 FJ410345 FJ.34186 FJ410347 FJ.34185 FJ410345 FJ.34184 FJ.34186 FJ.34193 FJ410347 FJ.34184 FJ.34186 FJ.34193 FJ410347 FJ.34184 FJ.34186 FJ.10347 FJ.34193 FJ.10347 FJ.34193 FJ.10347 FJ.34193 FJ.10347 FJ.34193 FJ.10347 FJ.10348	P. sanguineus	CIRM-BRFM 981	P. cf sanguineus	French New Caledonia/deadwood	FJ234204	FJ410365	EU714503
CIRN-BRFM 893 P. sanguineus Kowou, French Guiana/rotten wood FJ.34186 FJ.410342 CIRN-BRFM 895 P. sanguineus Paracou, French Guiana/rotten wood FJ.234186 FJ.410343 CIRN-BRFM 895 P. sanguineus Paracou, French Guiana/rotten wood FJ.234190 FJ.410345 CIRN-BRFM 900 P. sanguineus Laussat, French Guiana/rotten wood FJ.234190 FJ.410345 CIRN-BRFM 901 P. sanguineus Laussat, French Guiana/rotten wood FJ.234190 FJ.410345 CIRN-BRFM 902 P. sanguineus Sainte Ele, French Guiana/rotten wood FJ.234192 FJ.410347 CIRN-BRFM 902 P. sanguineus Royale Island, French Guiana/rotten wood FJ.234192 FJ.410348 CIRN-BRFM 902 P. sanguineus Royale Island, French Guiana/rotten wood FJ.234192 FJ.410356 CIRN-BRFM 903 P. sanguineus Royale Island, French Guiana/rotten wood FJ.234195 FJ.410356 CIRN-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ.234195 FJ.410356 CIRN-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ.234195 FJ.410356 CIRN-BRFM 916 P. sangui	P. sanguineus	CIRM-BRFM 892	P. sanguineus	Kow Marsh, French Guiana/trunk of dead palm tree	FJ234185	FJ410341	EU678766
CIRM-BRFM 895 P. sanguineus Paracou, French Guiana/notten wood FJ324187 FJ410343 CIRM-BRFM 896 P. sanguineus Paracou, French Guiana/notten wood FJ324188 FJ410346 CIRM-BRFM 900 P. sanguineus Laussat, French Guiana/notten wood FJ324190 FJ410347 CIRM-BRFM 901 P. sanguineus Laussat, French Guiana/notten wood FJ324192 FJ410347 CIRM-BRFM 901 P. sanguineus Sanguineus Royale Island, French Guiana/notten wood FJ324192 FJ410347 CIRM-BRFM 902 P. sanguineus Royale Island, French Guiana/notten wood FJ234195 FJ410346 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/notten wood FJ234195 FJ410350 CIRM-BRFM 906 P. sanguineus Royale Island, French Guiana/notten wood FJ234195 FJ410355 CIRM-BRFM 906 P. sanguineus Royale Island, French Guiana/notten wood FJ234195 FJ410355 CIRM-BRFM 906 P. sanguineus Royale Island, French Guiana/notten wood FJ234195 FJ410355 CIRM-BRFM 906 P. sanguineus Royale Island, French Guiana/notten wood FJ234195 FJ410355 CIRM-BRFM 906	P. sanguineus	CIRM-BRFM 893	P. sanguineus	Kowou, French Guiana/edge of sea	FJ234186	FJ410342	EU678779
CIRM-BRFM 896 P. sanguineus Paracou, French Guiana/burnt wood F1234198 F410344 CIRM-BRFM 890 P. sanguineus Laussat, French Guiana/rotten wood F1234191 F410346 CIRM-BRFM 901 P. sanguineus Laussat, French Guiana/rotten wood F1234191 F410347 CIRM-BRFM 902 P. sanguineus Sainte Elie, French Guiana/rotten wood F1234193 F410349 CIRM-BRFM 903 P. sanguineus Royale Island, French Guiana/rotten wood F1234193 F410349 CIRM-BRFM 903 P. sanguineus Royale Island, French Guiana/rotten wood F1234193 F410350 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood F1234195 F410352 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood F1234195 F410352 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood F1234195 F410352 CIRM-BRFM 905 P. stronusus Royale Island, French Guiana/rotten wood F1234197 F410352 CIRM-BRFM 905 P. cf. coccineus Unknown F1234197 F410355 F1410355 INB W3008 P. cf. coccineus Unknow	P. sanguineus	CIRM-BRFM 895	P. sanguineus	Paracou, French Guiana/rotten wood	FJ234187	FJ410343	EU678767
CIRM-BRFM 899 P. sanguineus Laussat, French Guiana/rotten wood FJ234190 FJ410346 CIRM-BRFM 900 P. sanguineus Laussat, French Guiana/rotten wood FJ234191 FJ410347 CIRM-BRFM 901 P. sanguineus Laussat, French Guiana/rotten wood FJ234192 FJ410349 CIRM-BRFM 902 P. sanguineus Nacouria, French Guiana/rotten wood FJ234193 FJ410349 CIRM-BRFM 902 P. sanguineus Royale Island, French Guiana/rotten wood FJ234193 FJ410350 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ234194 FJ410351 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410352 CIRM-BRFM 801 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410352 CIRM-BRFM 81 P. ef. coccineus Unknown Venezuela/rotten wood FJ234195 FJ410352 CIRM-BRFM 542 P. ef. coccineus Unknown FJ234195 FJ410352 FJ410355 IMB V3008 P. ef. coccineus Hainan, Rotten hardwood FJ233763 [‡] FJ410355 FJ410355 IMB K33 P. ef. coccineu	P. sanguineus	CIRM-BRFM 896	P. sanguineus	Paracou, French Guiana/burnt wood	FJ234188	FJ410344	EU678768
CIRM-BRFM 900 P. sanguineus Laussat, French Guiana/rotten wood FJ234191 FJ410347 CIRM-BRFM 901 P. sanguineus Sainte Elie, French Guiana/rotten wood FJ234192 FJ410348 CIRM-BRFM 902 P. sanguineus Sainte Elie, French Guiana/burnt wood FJ234192 FJ410349 CIRM-BRFM 903 P. sanguineus Royale Island, French Guiana/burnt wood FJ234195 FJ410350 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410352 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410352 CIRM-BRFM 881 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410352 CIRM-BRFM 881 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410352 CIRM-BRFM 881 P. et. coccineus Unknown Venezuela/rotten wood FJ234195 FJ410352 IMB W3008 P. et. coccineus Hainan, Qiongzhong, China/rotten wood of Prinus's sp. AF363753* FJ410352 IMB W308 P. et. coccineus Hainan, Unchang, China/rotten wood of Prinus's sp. AF363776* FJ410355 IMB H21	P. sanguineus	CIRM-BRFM 899	P. sanguineus	Laussat, French Guiana/rotten wood	FJ234190	FJ410346	EU678770
CIRM-BRFM 901P. sanguineusSainte Elie, French Guiana/rotten woodFJ234192FJ410348CIRM-BRFM 902'P. sanguineusSainte Elie, French Guiana/rotten woodFJ234192FJ410349FJ410350CIRM-BRFM 903P. sanguineusMacouria, French Guiana/rotten woodFJ234195FJ410350FJ410350CIRM-BRFM 905P. sanguineusRoyale Island, French Guiana/rotten woodFJ234195FJ410351FJ410351CIRM-BRFM 906P. sanguineusRoyale Island, French Guiana/rotten woodFJ234195FJ410352FJ410352CIRM-BRFM 881P. sanguineusRoyale Island, French Guiana/rotten woodFJ234195FJ410352FJ410352CIRM-BRFM 542P. cf. coccineusUnknownFJ234106FJ410352FJ410352FJ410352CIRM-BRFM 542P. cf. coccineusUnknownHainan, Guina/rotten wood of Pinus sp.FJ234197FJ410352FJ410355IMB W3008P. cf. coccineusHainan, Qiongzhong, China/rotten hardwoodAF363753 [‡] FJ410355FJ410355IMB L2180P. cf. coccineusHainan, Tunchang, China/rotten hardwoodAF363770 [‡] FJ410355FJ410355IMB W3008P. cf. coccineusHainan, Tunchang, China/rotten hardwoodAF363770 [‡] FJ410355FJ410355IMB K308P. cf. coccineusHainan, Tunchang, China/rotten hardwoodAF363770 [‡] FJ410355FJ410355IMB G66P. cf. coccineusHainan, Tunchang, China/rotten hardwoodAF363754 [‡] FJ410356FJ410356IMB G05P. cf. coccineusMonokaryon from	P. sanguineus	CIRM-BRFM 900	P. sanguineus	Laussat, French Guiana/rotten wood	FJ234191	FJ410347	EU678771
CIRM-BRFM 902* P. sanguineus Macouria, French Guiana/burnt wood FJ234193 FJ410349 CIRM-BRFM 903 P. sanguineus Royale Island, French Guiana/rotten wood FJ234194 FJ410350 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410351 CIRM-BRFM 905 P. sanguineus Royale Island, French Guiana/rotten wood FJ234195 FJ410352 CIRM-BRFM 881 P. sanguineus Royale Island, French Guiana/rotten wood FJ234196 FJ410352 CIRM-BRFM 881 P. sanguineus Royale Island, French Guiana/rotten wood FJ234196 FJ410352 CIRM-BRFM 542 P. cf. coccineus Unknown FJ234107 FJ410352 IMB W3008 P. cf. coccineus Unknown FJ234200 FJ410355 IMB W3008 P. cf. coccineus Hainan, giongzhong, China/rotten wood of Prinus sp. AF363753 [‡] FJ410355 IMB H2180 P. cf. coccineus Hainan, Qiongzhong, China/rotten hardwood AF363770 [‡] FJ410355 IMB H2180 P. cf. coccineus Hainan, Tunchang, China/rotten wood of Prinus sp. AF363773 [‡] FJ410355 IMB G66 P. cf. coccineus Hainan, Tun	P. sanguineus	CIRM-BRFM 901	P. sanguineus	Sainte Elie, French Guiana/rotten wood	FJ234192	FJ410348	EU678772
CIRM-BRFM 903P. sanguineusRoyale Island, French Guiana/rotten woodF1234194F1410350CIRM-BRFM 905P. sanguineusRoyale Island, French Guiana/rotten woodF1234195F1410351CIRM-BRFM 906P. sanguineusRoyale Island, French Guiana/rotten woodF1234195F1410352CIRM-BRFM 881P. sanguineusVenezuela/rotten woodF1234196F1410352F1410352CIRM-BRFM 542P. cf. coccineusUnknownUnknownF1234197F1410352F1410355INB W3008P. cf. coccineusUnknownHainan, China/rotten wood of broad-leaves treeAF363753 ⁴ F1410355F1410355INB W3008P. cf. coccineusHainan, Bawangling, China/rotten wood of Proad-leaves treeAF363775 ³ F1410355F1410355INB H2180P. cf. coccineusHainan, Qiongzhong, China/rotten hardwoodAF363770 ⁴ F1410356F1410356INB W3008P. cf. coccineusHainan, Qiongzhong, China/rotten hardwoodAF363770 ³ F1410359F1410356INB W006-2P. cf. coccineusHainan, Und/rotten hardwoodAF363770 ³ F1410359F1410356INB W006-2P. cf. coccineusMonokaryon from fruit-body of wild strain IMB G05F1410356F1410356INB W006-2P. cf. coccineusMonokaryon from fruit-body of wild strain IMB G05F1750267F410356INB W005-2P. cf. coccineusSinzuoka, Izu, Japan/decaying wood Castanea crenataF1750267F410356INB UCL 38527P. cf. coccineusShizuoka, Izu, Japan/decaying wood Castanea crenataF1	P. sanguineus	CIRM-BRFM 902 ⁺	P. sanguineus	Macouria, French Guiana/burnt wood	FJ234193	FJ410349	EU678773
5 CIRM-BRFM 905 <i>P. sanguineus</i> Royale Island, French Guiana/rotten wood FJ234195 FJ410351 I 5 CIRM-BRFM 906 <i>P. sanguineus</i> Royale Island, French Guiana/rotten wood FJ234196 FJ410352 I 5 CIRM-BRFM 881 <i>P. sanguineus</i> Royale Island, French Guiana/rotten wood FJ234196 FJ410352 I 6 CIRM-BRFM 542 <i>P. ct. coccineus</i> Unknown FJ234100 FJ410353 I 6 CIRM-BRFM 542 <i>P. ct. coccineus</i> Unknown FJ234100 FJ410355 I 6 IMB W3008 <i>P. ct. coccineus</i> Unknown EJ234200 FJ410355 I 6 IMB W3008 <i>P. ct. coccineus</i> Unknown Banany. China/rotten wood of broad-leaves tree AF363753 ⁺ FJ410355 I 6 IMB H2180 <i>P. ct. coccineus</i> Hainan, Uund/rotten hardwood AF363763 ⁺ FJ410355 I 6 IMB H2180 <i>P. ct. coccineus</i> Hainan, Tunchang, China/rotten wood of broad-leaves tree AF363773 ⁺ FJ410356 I 7 IMB G66 <i>P. ct. coccineus</i> Hainan, Tunchang, China/rotten wood of broa	P. sanguineus	CIRM-BRFM 903	P. sanguineus	Royale Island, French Guiana/rotten wood	FJ234194	FJ410350	EU678774
5 CIRM-BRFM 906 P. sanguineus Royale Island, French Guiana/rotten wood FJ234196 FJ410352 I 5 CIRM-BRFM 881 P. sanguineus Venezuela/rotten wood FJ234197 FJ410362 I 5 CIRM-BRFM 542 P. cf. coccineus Unknown FJ234200 FJ410353 I 5 CIRM-BRFM 542 P. cf. coccineus Unknown FJ234200 FJ410355 I 5 IMB W3008 P. cf. coccineus Unknown FJ234200 FJ410355 I 6 IMB W3008 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of Proad-leaves tree AF363763 [±] FJ410356 I 6 IMB H2180 P. cf. coccineus Hainan, Bawangling, China/rotten hardwood AF363763 [±] FJ410356 I 6 IMB H2180 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363770 [±] FJ410358 I 7 IMB G05.10 [§] P. cf. coccineus Hainan, Tunchang, China/rotten wood of broad-leaves tree AF363770 [±] FJ410359 I 7 IMB G05.10 [§] P. cf. coccineus Hainan, Luna/rotten wood of broad-leaves tree AF363762	P. sanguineus	CIRM-BRFM 905	P. sanguineus	Royale Island, French Guiana/rotten wood	FJ234195	FJ410351	EU678782
5 CIRM-BRFM 881 <i>P. sanguineus</i> Venezuela/rotten wood FJ234197 FJ410362 F 5 CIRM-BRFM 542 <i>P. cf. coccineus</i> Unknown FJ234200 FJ410353 F 5 CIRM-BRFM 542 <i>P. cf. coccineus</i> Unknown FJ234200 FJ410355 F 5 IMB W3008 <i>P. cf. coccineus</i> Unknown FJ234200 FJ410355 F 5 IMB W3008 <i>P. cf. coccineus</i> Guangxi, Mt Daming, China/rotten wood of <i>Pinus</i> sp. AF363763 [‡] FJ410355 F 5 IMB H2180 <i>P. cf. coccineus</i> Hainan, Bawangling, China/rotten hardwood AF363776 [‡] FJ410356 F 5 IMB H2180 <i>P. cf. coccineus</i> Hainan, Tunchang, China/rotten hardwood AF363776 [‡] FJ410357 F 6 IMB G05.10 [§] <i>P. cf. coccineus</i> Hainan, Tunchang, China/rotten hardwood AF363776 [‡] FJ410356 F 6 IMB W06-2 <i>P. cf. coccineus</i> Hainan, Tunchang, China/rotten wood of broad-leaves tree AF363776 [‡] FJ410356 F 6 IMB W006-2 <i>P. cf. coccineus</i> Monokaryon from fruit-body of wild strain IMB G05	P. sanguineus	CIRM-BRFM 906	P. sanguineus	Royale Island, French Guiana/rotten wood	FJ234196	FJ410352	EU678776
5 CIRM-BRFM 542 P. cf. coccineus Unknown FJ234200 FJ10353 I 5 IMB W3008 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363753 ⁴ FJ10356 I 5 IMB W3008 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363763 ⁴ FJ410356 I 5 IMB H2180 P. cf. coccineus Hainan, Qiongzhong, China/rotten hardwood AF363776 ³ FJ410357 I 5 IMB H2180 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363776 ³ FJ410356 I 6 INB G66 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363770 ³ FJ410359 I 6 INB G66 P. cf. coccineus Hainan, Tunchang, China/rotten wood of broad-leaves tree AF363752 ³ FJ410359 I 6 INB W006-2 P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ410350 I 7 INB G05.10 ⁸ P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ410360 I 7 MUCL 38527 P. cf. coccrineus Shiz	P. sanguineus	CIRM-BRFM 881	P. sanguineus	Venezuela/rotten wood	FJ234197	FJ410362	EU684155
5 IMB W3008 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363753 [‡] FJ410356 I 5 IMB G53 P. cf. coccineus Hainan, Bawangling, China/rotten wood of Pinus sp. AF363763 [‡] FJ410357 I 5 IMB H2180 P. cf. coccineus Hainan, Qiongzhong, China/rotten hardwood AF363770 [‡] FJ410358 I 5 IMB H2180 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363772 [‡] FJ410358 I 5 IMB G66 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363762 [‡] FJ410359 I 6 IMB W006-2 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363754 [‡] FJ410360 I 6 IMB W006-2 P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ410360 I 7 MUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata FJ750267 FJ410361 I 7 MUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata FJ750266 FJ410372 I	P. sanguineus	CIRM-BRFM 542	P. cf. coccineus	Unknown	FJ234200	FJ410353	EU678786
5 IMB G53 P. cf. coccineus Hainan, Bawangling, China/rotten wood of <i>Pinus</i> sp. AF363763 [‡] FJ410357 I 5 IMB H2180 P. cf. coccineus Hainan, Qiongzhong, China/rotten hardwood AF363770 [‡] FJ410358 E 5 IMB H2180 P. cf. coccineus Hainan, Uiongzhong, China/rotten hardwood AF363762 [‡] FJ410358 E 5 IMB W006-2 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363754 [‡] FJ410359 E 5 IMB W006-2 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363754 [‡] FJ410360 E 6 P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ410361 E MUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata FJ750267 FJ410361 E 7 MUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata FJ750266 FJ410351 E	P. sanguineus	IMB W3008	P. cf. coccineus	Guangxi, Mt Daming, China/rotten wood of broad-leaves tree	AF363753 [‡]	FJ410356	EU714499
IMB H2180 P. cf. coccineus Hainan, Qiongzhong, China/rotten hardwood AF363770 [‡] FJ410358 I is IMB G66 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363762 [‡] FJ410359 I is IMB W006-2 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363754 [‡] FJ410360 I is IMB W006-2 P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ410360 I is IMB G05.10 [§] P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ410361 I inMUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata FJ750266 FJ410372 I	P. sanguineus	IMB G53	P. cf. coccineus	Hainan, Bawangling, China/rotten wood of Pinus sp.	AF363763 [‡]	FJ410357	EU683255
IMB G66 P. cf. coccineus Hainan, Tunchang, China/rotten hardwood AF363762 [‡] FJ410359 IMB W006-2 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363754 [‡] FJ410360 IMB W006-2 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363754 [‡] FJ410360 IMB G05.10 [§] P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ750267 FJ410361 MUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata FJ750266 FJ410372	P. sanguineus	IMB H2180	Ŀ.	Hainan, Qiongzhong, China/rotten hardwood	AF363770 [‡]	FJ410358	EU683256
IMB W006-2 P. cf. coccineus Guangxi, Mt Daming, China/rotten wood of broad-leaves tree AF363754 [‡] FJ410360 Is IMB G05.10 [§] P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 FJ750267 FJ410361 INUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood <i>Castanea crenata</i> FJ750266 FJ410372 I	P. sanguineus	IMB G66	Ŀ.	Hainan, Tunchang, China/rotten hardwood	AF363762 [‡]	FJ410359	EU683257
s IMB G05.10 [§] P. cf. coccineus Monokaryon from fruit-body of wild strain IMB G05 F1750267 FJ410361 MUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata F1750266 FJ410372 I	P. sanguineus	IMB W006-2	P. cf. coccineus	Guangxi, Mt Daming, China/rotten wood of broad-leaves tree	AF363754 [‡]	FJ410360	EU678784
MUCL 38527 P. cf. coccineus Shizuoka, Izu, Japan/decaying wood Castanea crenata EJ750266 FJ410372	P. sanguineus	IMB G05.10 [§]	P. cf. coccineus	Monokaryon from fruit-body of wild strain IMB G05	FJ750267	FJ410361	EU678783
	P. coccineus	MUCL 38527	P. cf. coccineus	Shizuoka, Izu, Japan/decaying wood Castanea crenata	FJ750266	FJ410372	EU683253

Table 1. Strains of Pycnoporus cinnabarinus, Pycnoporus coccineus, Pycnoporus and Pycnoporus sanguineus included in the study and newly identified at the molecular level

				NCBI accession numbers	umbers	
Original identification	Collection number*	Final identification	Geographic origin/host	ITS1-5.8S-ITS2 β-Tubulin Lac F2-R8	β-Tubulin	Lac F2-R8
P. coccineus	CBS 355.63	P. coccineus	Bougainville, Aropa Airstrip, Solomon Islands/log	AF363760 [‡]	FJ410375	EU678785
P. coccineus	MUCL 38523 [†]	P. coccineus	Victoria, Australia/ironbark pole, Eucalyptus sp.	FJ873395	FJ410373	EU683254
P. coccineus	MUCL 38525	P. coccineus	Manjimup, Western Australia/Eucalyptus marginatus	FJ234207	FJ410374	EU714501
Trametes suaveolens	CBS 446.61	Trametes suaveolens	Sonnblick, Austria	FJ750268	FJ410378	
*The strains were obtain	ed from different collection	ns: CBS-KNAW, Centraalbu	*The strains were obtained from different collections: CBS-KNAW, Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; CIRM-BRFM, Banque de Ressources	he Netherlands; CIRM-	BRFM, Banque o	le Ressources
Fongiques de Marseille o	u Centre International de	Ressources Microbiennes,	Fongiques de Marseille du Centre International de Ressources Microbiennes, France; CRBIP, Institut Pasteur, Paris, France; IMB, Institute of Microbiology of Beijing, China; MUCL, Mycothèque de	robiology of Beijing, C	hina; MUCL, My	/cothèque de
l'Université Catholique d	'Université Catholique de Louvain, Louvain-la-Neuve, Belgium.	/e, Belgium.				
*Reference strain.						

Monokaryons obtained as described by Lomascolo et al. (2002) for IMB G05.10 and Herpoël et al. (2002) for CIRM-BRFM 137 Sequences previously deposited in GenBank (Lomascolo et al., 2002)

Fable 1. Continued

© 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved

Coriolus hirsutus and P. sajor-caju (NCBI accession numbers AB072703, AY458017, AB035409, AY081775 and AJ507324, respectively).

The ITS1-5.8S rRNA gene-ITS2, laccase F2-R8 and β-tubulin Bsens-Brev fragments were amplified from 50 ng genomic DNA in 50 µL PCR reagent containing 1.5 U Expand[™] High Fidelity PCR system (Roche, France) with a protocol adapted from Lomascolo et al. (2002). Annealing temperatures and extension times were respectively 51 °C and 1 min for ITS1/ITS4 amplification, 55 °C and 50 s for Bsens/Brev amplification and 55 °C and 2 min for F2/R8 amplification. In the case of the lacF2/R8 fragment, the PCR products were further cloned into the pGEM®-T Easy vector (Promega), following the manufacturer's protocols. The PCR products were sequenced by GATC Biotech AG (Konstanz, Germany) or Cogenics (Meylan, France). All the nucleotide sequences were deposited in GenBank under the accession numbers given in Table 1.

Intron/exon junctions, in the Bsens-Brev B-tubulin and F2-R8 laccase gene fragments, were determined on the basis of alignment with, respectively, the Trametes versicolor FSU 2571 and P. cinnabarinus BRFM 137 coding regions (NCBI accession numbers AAY40456 and AF152170; Otterbein et al., 2000; Schmitt et al., 2008) and by identifying the eukaryotic consensus splicing sites (5'-GT and 3'-AG nucleotides). The nucleotide sequences (only exons for β -tubulin and laccase gene fragments) were aligned using the CLUSTAL w algorithm (Higgins et al., 1991). The alignments were then hand-refined. Phylogenetic analyses were performed from single genes according to the method developed for the FIGENIX platform (Gouret et al., 2005) using the heuristic search for maximum likelihood trees. Bootstrap values were calculated over 1000 replicates to assess branch topology. Phylogenetic trees were rooted with T. suaveolens as an outgroup.

Results and discussion

The filamentous fungi, among which the genus Pycnoporus is considered a strong contender for white biotechnology processes, form a huge worldwide source of biological diversity that needs to be explored. In the present work, the phylogenetic relationships of a large sample of Pycnoporus strains of different geographical origins were analysed using three complementary DNA markers. The nuclear rDNA region, ITS1-5.8S-ITS2, was often used to infer phylogenetic relationships among wood decay basidiomycetes species within a particular genus such as Phanerochaete (de Koker et al., 2003) or a species complex such as Postia caesia (Yao et al., 2005) but it often fails to provide robust phylogenetic resolution among the

FEMS Microbiol Lett 325 (2011) 37-48

fungal species (Wang *et al.*, 2004). The β -tubulin gene sequences were shown to resolve phylogenetic relationships within ascomycetes genera that could not be distinguished on the basis of morphology, especially in *Aspergillus* or *Pestalotiopsis* genera (Giraud *et al.*, 2007; Hu *et al.*, 2007). The genus *Pycnoporus* is described to overproduce laccase (encoded by *lac3-1* gene) as an extracellular ligninolytic enzyme in induced culture conditions (Eggert *et al.*, 1996; Lomascolo *et al.*, 2003). To date, genes encoding laccases have not been used to gain phylogenetic information within a fungal genus.

In this study, amplification of the ITS1-5.8S-ITS2 region yielded fragments 550-650 bp in length. After clean-up, the 36 sequences of Pycnoporus strains were aligned in 467 nucleotide positions (see Supporting Information, File S1). The sequencing analysis showed that the ITS1 and ITS2 regions were different in the strains studied, due to nt-insertions/deletions or substitutions, whereas the 5.8S rRNA gene sequences (157 bp long) were conserved for all the taxa. Within the ITS1 sequences, 44 of the 131 aligned positions (33.6%) varied among the strains of Pycnoporus. Within the ITS2 sequences, 36 of the 177 aligned positions (20.3%) varied among the strains of Pycnoporus. The most informative nucleotide sites (32 in all) were extracted from the alignment of the ITS1-5.8S rRNA gene-ITS2 sequences and are depicted in Table 2. Characterized by multiple nt-insertion events, up to 21 (see File S1), the sequences of the P. puniceus strains are not reported on this table. This sequence specificity was further confirmed by clustering ITS sequences available on GenBank (accession numbers FJ372685 and FJ372686) from Thai strains of P. puniceus. C and T insertions (at positions 48 and 452, respectively), and C at position 126 (instead of T) were shown to be specific to the P. cinnabarinus species. All the strains of P. sanguineus from Madagascar, Vietnam, French Guiana, New Caledonia and Venezuela exhibited identical ITS1 and ITS2 sequences. A common T/G and A/C substitution (at positions 43 and 113) was observed for the Chinese strains of P. sanguineus, including CIRM-BRFM 542 of unknown origin, and for all strains of P. coccineus. T/C and C/T substitutions (at positions 323 and 333) were shown to be specific to the East Asian strains of P. sanguineus and P. coccineus. Likewise, the ITS1 and ITS2 sequences of the strain MUCL 38420 (from Australia) classified as P. cinnabarinus were identical to those of both P. coccineus strains from Australia (MUCL 38523 and MUCL 38525), strongly suggesting taxonomic misidentification of the specimen. The strain MUCL 38420 was collected in Australia at the beginning of the 20th century; at that time, P. coccineus had not yet been described (Ryvarden & Johansen, 1980). In addition, the species P. cinnabarinus is known to be especially distributed in the temperate northern regions (Nobles & Frew, 1962).

Amplification of β -tubulin encoding gene fragments yielded 400-bp products on average. Comparison between gene and predicted cDNA fragment sequences showed that the corresponding coding region was interrupted by one intron. Interestingly, the intron length was 53, 54, 55 and 59 bp respectively for the species *P. puniceus*, *P. cinnabarinus*, *P. sanguineus* and *P. coccineus*, except for the Chinese *P. sanguineus* strains (including CIRM-BRFM 542), for which intron length was similar to that of *P. coccineus* species (59 bp instead of 55 bp). Identity between the partial predicted cDNAs was 78% on average. However, the amino acid sequences of the deduced partial proteins were 100% similar for all the strains.

β-Tubulin-encoding gene fragments, sequenced for the first time in Pycnoporus strains, were aligned in 263 nucleotide positions, and 55 of them (21%) varied among the strains of Pycnoporus (see File S2). The partial alignment depicted in Table 3 shows the most informative nucleotide sites, 26 in all. Compared with all the P. coccineus and P. sanguineus strains, specific variations occurred in six positions for the strains of P. puniceus and nine positions for the strains of P. cinnabarinus. Among the P. sanguineus and P. coccineus strains, sequence identities were observed for the strains of P. sanguineus from Vietnam, New Caledonia and Madagascar (except at position 260), and for those from French Guiana and Venezuela. C at position 98 and T at position 253 were common characters in all the strains of P. coccineus (including MUCL 38420) and in the Chinese strains of P. sanguineus (including CIRM-BRFM 542). C/G substitution at positions 152 and 206 was specific to the East Asian strains of Pycnoporus, and T/C substitution (at position 56) was specific to the Australian strains of Pycnoporus.

The phylogenetic trees inferred from ITS1-5.8S-ITS2 and β-tubulin gene sequences (Figs 1 and 2) clearly differentiated the group of P. cinnabarinus strains from the group of P. puniceus strains (100% bootstrap support). The group of the P. coccineus strains from Australia (including strain MUCL 38420), the P. sanguineus strains from China (including CIRM-BRFM 542 of unknown origin) with the Japanese strain of P. coccineus, and the strain of P. coccineus from the Solomon Islands (positioned alone), formed a well supported clade (84% bootstrap value with ITS). Due to the high similarity of their ITS sequences, the strains of P. sanguineus from Madagascar, Vietnam, New Caledonia, French Guiana and Venezuela could not be distinguished phylogenetically. β-Tubulin molecular data might be of slightly more help than ITS data to disclose genetic polymorphism within these P. sanguineus strains with two groups, although weakly supported (Fig. 2).

Table 2. Informative nucleotide sites from the alignment of the ITS1-5.85 rRNA gene-ITS2 regions for Pycnoporus cinnabarinus, Pycnoporus sanguineus and Pycnoporus coccineus

		Inte	mal	Internal transcribed space	cribec	J spa	cer1	(ITS1)	_			1			[5.8 5	S rRNA	A ger	gene]		l lut	ernal	tran	scribe	ed sp	Internal transcribed spacer2	(ITS2)	2)					
						•								I					_	~	m	m	m	m	m	m	m	m	4	4	4	4
		-	~ ∞	0 5	2 9	8 5	ω4	4 M	4 %	04	Ь 4	5 7	ωm	0 0	00	m	1 0		6	തന	00	~ ~	0 M	mm	ыю		Ν	► 8	- 4 п	5 2	ы	ഗവ
Pcin30555 [†]	Belgium	∢	ט	ט	υ	ט	υ	U	υ	ט	∢	υ	_	A	⊲				:	∢		υ	υ	-	υ	∢	F	-	-	-	F	⊢
Pcin137	France (MK)																		: :													
Pcin237	Russia																				•											
Pcin945	France																				•											
Pcin38420	Australia							⊢	ı		⊢					ব		-	L							ט				ı		
Psang892	French Guiana								ı		⊢]]							U				ı		
Psang893	French Guiana								ī		⊢						•	-	r]							U				ī		
Psang895	French Guiana								ī		⊢						•		Γ]							ט				ī		
Psang896	French Guiana								,		⊢						•	_	Τ []							U				ī		
Psang899	French Guiana								,		⊢						•	_	Τ []							U				ī		
Psang900	French Guiana								ī		⊢					•	•		Γ]							ט				ī		
Psang901	French Guiana								ī		⊢					•	•	-	τ []							ט				ī		
Psang902 [†]	French Guiana								·		⊢					•		_	Τ []							ט				ï		
Psang903	French Guiana								ı		⊢						•		Γ]	•						U				ï		
Psang905	French Guiana								·		⊢					•	•		Γ]	•						U						
Psang906	French Guiana								,		⊢						•		г]							U				,		
Psang881	Venezuela								ī		⊢						•		г]							ט				ī		
Psang29375	Madagascar								ī		⊢					·	•		г]		•					ט				ī		
Psang942	Vietnam								ī		⊢					•	•		L [::]							ט				,		
Psang943	Vietnam								ī		⊢					•	•		г]							U						
Psang979	New Caledonia								,		⊢						•		L []							U				,		
Psang980	New Caledonia								ī		⊢					•			г]							U						
Psang981	New Caledonia								ī		⊢					•	•		г]							U						
Psang542	Unknown							⊢	·		⊢					d	•		г]	•			⊢	υ		U				ı		
PsangW3008	China							⊢	ı		⊢					d	•		г]	•	•		⊢	υ		U				·		
PsangG53	China							⊢	·		⊢					d	•		г]	•	•		⊢	υ		U						
PsangH2180	China							⊢	·		⊢					V	•		г]				⊢	υ		ט				ı		
PsangG66	China							⊢	ī		⊢					⊄	•		т []				⊢	υ		ט				ī		
PsangW006-2	China							⊢	,		⊢					4	•		т []				⊢	υ		U				ī		
PsangG05.10	China (MK)							⊢	ï		⊢					4	•		т []	•			⊢	υ		U				ï		
Pcoc38527	Japan							⊢	ī		⊢					ব		_	Γ]	•			⊢	υ		U						
Pcoc355.63	Solomon Islands							⊢			⊢					V	•		г] Т							U				,		
Pcoc38523 [†]	Australia							⊢	ŗ		⊢					4	•		т []							U				ī		
Pcoc38525	Australia							⊢	ı		⊢					4	•		L []							ט				,		

© 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved

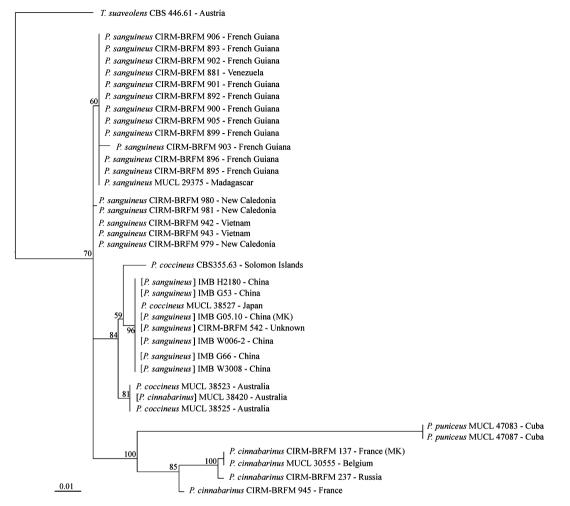

		Pos	sitior	n in t	he s	eque	ence	aligi	nme	nt*																	
		5	1 4	2 9	3 2	4 1	5 0	5 6	7 1	9 8	1 3 4	1 5 2	1 6 7	1 7 3	1 7 6	1 7 9	1 8 2	1 9 7	2 0 6	2 1 3	2 2 1	2 2 4	2 3 9	2 4 3	2 4 6	2 5 3	2 6 0
Pcin30555 [†]	Belgium	С	А	Т	Т	Т	С	С	Т	Т	Т	G	С	С	Т	С	G	С	G	Т	Т	С	G	Т	С	Т	С
Pcin137	France (MK)																										
Pcin237	Russia																										
Pcin945	France																										
Pcin38420	Australia	G	G	С	С	С	Т	Т		С	С				С						С	Т		С	А		
Ppun47083	Cuba	G	G	С	С	С	G		G	С			Т	Т	С	Т	А	Т		С	С	Т	А	С			
Ppun47087	Cuba	G	G	С	С	С	G		G	С			Т	Т	С	Т	А	Т		С	С	Т	А	С			
Psang892	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang893	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang895	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang896	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang899	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang900	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang901	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang902 [†]	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang903	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang905	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang906	French Guiana	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang881	Venezuela	G	G	С	С	С	G				С				С						С	Т		С	А	С	
Psang29375	Madagascar	G	G	С	С	С	G				С				С			Т		С	С	Т		С	А	С	
Psang942	Vietnam	G	G	С	С	С	G				С				С			Т		С	С	Т		С	А	С	G
Psang943	Vietnam	G	G	С	С	С	G				С				С			Т		С	С	Т		С	А	С	G
Psang979	New Caledonia	G	G	С	С	С	G				С				С			Т		С	С	Т		С	А	С	G
Psang980	New Caledonia	G	G	С	С	С	G				С				С			Т		С	С	Т		С	А	С	G
Psang981	New Caledonia	G	G	С	С	С	G				С				С			Т		С	С	Т		С	А	С	G
Psang542	Unknown	G	G	С	С	С	G			С	С	С			С				С		С	Т		С	А		
PsangW3008	China	G	G	С	С	С	G			С	С	С			С				С		С	Т		С	А		
PsangG53	China	G	G	С	С	С	G			С	С	С			С				С		С	Т		С	А		
PsangH2180	China	G	G	С	С	С	G			С	С	С			С				С		С	Т		С	А		
PsangG66	China	G	G	С	С	С	G			С	С	С			С				С		С	Т		С	А		
PsangW006.2	China	G	G	С	С	С	G			С	С	С			С				С		С	Т		С	А		
PsangG05.10	China (MK)	G	G	С	С	С	G			С	С	С			С				С		С	Т		С	А		
Pcoc38527	Japan	G	G	С	С	С	G			С	С	С			С				С		С	Т		C	А		
Pcoc355.63	Solomon Islands	G	G	С	С	С	G			С	С				С						С	Т		C	А		
Pcoc38523 [†]	Australia	G	G	С	С	С	Т	Т		С	С				С						С	Т		C	А		
Pcoc38525	Australia	G	G	С	С	С	Т	Т		С	С				С						С	Т		С	А		

Table 3. Informative nucleotide sites from the alignment of the partial regions of the β -tubulin gene for all the strains of *Pycnoporus* examined in this study

Psang, Pycnoporus sanguineus; Ppun, Pycnoporus puniceus; Pcin, Pycnoporus cinnabarinus; Pcoc, Pycnoporus coccineus; MK, Monokaryon (see Table 1).

*Vertical numbering; dot for nucleotide identical to the first reference sequence (from *Pycnoporus cinnabarinus* MUCL 30555); hyphen for gap. [†]Reference strains of *Pycnoporus* species.

In this study, the functional *lac3-1* gene, which protein products showed high variability in enzymatic activity between the species of *Pycnoporus* (Uzan *et al.*, 2010), was targeted to infer the phylogenetic relationships within the genus *Pycnoporus*, and especially within the *P. sanguineus* and *P. coccineus* species. PCR amplification resulted in laccase F2-R8 products of about 1640 bp. Comparison between gene and predicted cDNA fragment sequences showed that the corresponding partial coding regions were interrupted by eight introns. A positional homology among these introns could be observed. It is noteworthy that the eight intron lengths were strictly similar for the East Asian strains of *Pycnoporus* on the one hand, and for the Australian strains on the other (data not shown). The nine exons corresponded to sequences of 1182 nucleotides. The 36 deduced partial proteins (corresponding to about 75–80% of the full length protein) displayed sequence similarity ranging from 87.6% to

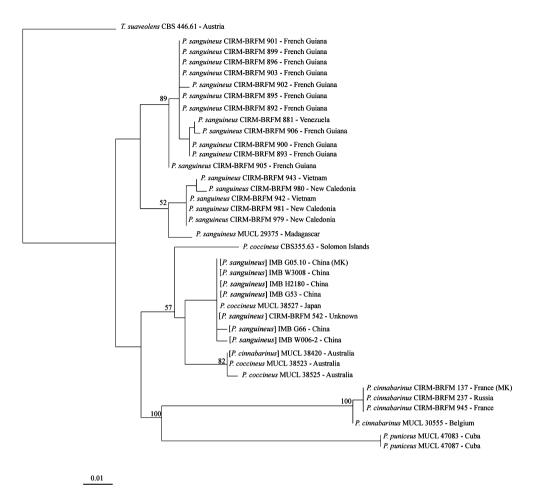


Fig. 1. Maximum likelihood phylogenetic tree based on ITS1-5.8S-ITS2 sequences of the 36 *Pycnoporus puniceus, Pycnoporus cinnabarinus, Pycnoporus sanguineus* and *Pycnoporus coccineus* strains studied. Model of nucleotide substitution HKY was chosen; transition weighted four times over transversion and log likelihood = -1254.30132. Estimated base frequencies were: f(A) = 0.21956, f(C) = 0.23793, f(G) = 0.25956 and f(T) = 0.28295. Numbers are percentages from 1000 bootstrap replicates. The scale bar represents one nucleotide substitution per 100 nucleotides. Clearly misidentified strains in brackets (see Table 1).

99.7%. The 36 laccase sequences from *Pycnoporus* strains were aligned in 1185 nucleotide positions after hand-refining (see File S3). These regions of the laccase gene had 33% variable positions among the strains of *Pycnoporus* studied. Informative nucleotide site variations were localized in the conserved copper-binding domains, especially domains II and III with T/C substitution specific to the East Asian strains of *Pycnoporus*.

Phylogenetic construction of our worldwide sample of *Pycnoporus lac3-1* sequences led to distinct groups that were correlated with the geographic origin of the strains (Fig. 3). Based on the evolutionary concept for plant diversity (Li, 2008), the distribution of *Pycnoporus* strains was characterized in terms of floristic regions, corresponding to geographic area with a relatively uniform composition of plant species (Takhtajan, 1986). Consis-

tent with ITS and β-tubulin phylogenies, molecular clustering based on lac3-1 sequence analysis grouped the P. cinnabarinus and P. puniceus strains into two highly supported specific lineages. The P. sanguineus and P. coccineus strains were distributed through four distinct, well supported clades and sub-clades. A neotropical sub-clade grouped the P. sanguineus strains from French Guiana and Venezuela - and the reference strain CIRM-BRFM 902 - corresponding to P. sanguineus sensu stricto. A paleotropical sub-clade clustered the strains from Madagascar, Vietnam and New Caledonia, and could be defined as Pycnoporus cf. sanguineus. The Australian clade of P. coccineus, including the reference strain MUCL 39523, corresponded to P. coccineus sensu stricto. This clade also included the Malesian strain from the Solomon Islands, positioned separately, consistent with the high

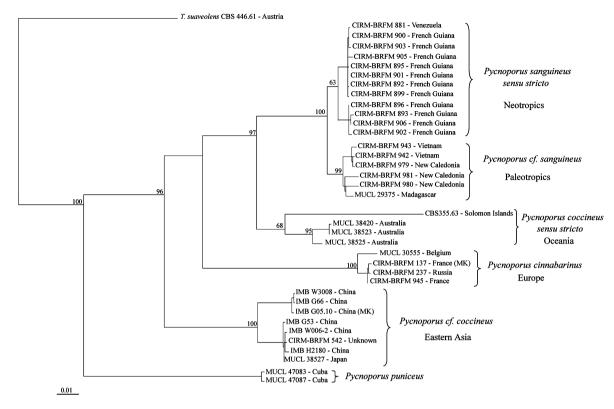


Fig. 2. Maximum likelihood phylogenetic tree based on partial region of the β -tubulin gene sequences of the 36 *Pycnoporus cinnabarinus*, *Pycnoporus coccineus*, *Pycnoporus puniceus* and *Pycnoporus sanguineus* strains studied. Model of nucleotide substitution HKY was chosen; transition weighted four times over transversion and log likelihood = -909.56923. Estimated base frequencies were: f(A) = 0.18825, f(C) = 0.34650, f(G) = 0.22688 and f(T) = 0.23838. Numbers above branches indicate that given branches were supported more than 50% from 1000 bootstrap replicates. The scale bar represents one nucleotide substitution per 100 nucleotides. Clearly misidentified strains in brackets (see Table 1).

level of endemic species in that country (Udvardy, 1975). The fourth group was the Eastern Asian region clade, clustering the strains from China, including CIRM-BRFM 542 of unknown origin and the strain MUCL 38527 from Japan. The strains of this last clade shared polymorphism in ITS and β -tubulin sequences with *P. coccineus sensu* stricto strains, as well as intron length in β -tubulin gene sequences, known to be characteristic of a lineage in basidiomycetes (Begerow et al., 2004). This suggests a misidentification of Chinese specimens, very recently confirmed by macroscopic observation of basidiocarps. The high degree of similarity of the morphological characters between P. sanguineus and P. coccineus and the high variability of specimens across the season and the geographical area could explain this field misidentification (Nobles & Frew, 1962). Accordingly, the Eastern Asian

region strains of *Pycnoporus* (from China and Japan), together with the related strain CIRM-BRFM 542 (suspected to be of East Asian descent), formed a *P. coccineus*-like group defined as *Pycnoporus* cf. *coccineus* (Fig. 3).

Biogeographic phylogenetic structure was related in polyporoid fungi such as *Grifola frondosa*, separating Eastern North American strains from Asian strains, and no morphological distinction was detected between them (Shen *et al.*, 2002). In the *Ganoderma applanatum/australe* species complex, eight distinct clades were strongly correlated with the geographic origin of the strains, and corresponded to mating groups (Moncalvo & Buchanan, 2008). Interestingly, the East Asian clade in our study corresponded to the functional group of *Pycnoporus* strains previously reported for their high level of laccase

Fig. 3. Maximum likelihood phylogenetic tree based on F2-R8 partial laccase gene sequences of the 36 *Pycnoporus cinnabarinus, Pycnoporus coccineus, Pycnoporus puniceus* and *Pycnoporus sanguineus* strains studied. Model of nucleotide substitution HKY was chosen; transition weighted four times over transversion and log likelihood = -6703.69432. Estimated base frequencies were: f(A) = 0.19881, f(C) = 0.34192, f(G) = 0.23740 and f(T) = 0.22187. Numbers above branches indicate that given branches were supported more than 50% from 1000 bootstrap replicates. The scale bar represents one nucleotide substitution per 100 nucleotides. Clearly misidentified strains in brackets (see Table 1).

production (Lomascolo *et al.*, 2002). Correlation between phylogenetic proximity of fungal strains and enzymatic property similarity has been described previously, e.g. a monophyletic group of *Phlebia* strains was characterized by its similar ability to degrade recalcitrant organopollutants (Kamei *et al.*, 2005). In the same way, molecular clustering of isolates of *Aspergillus niger* aggregate group could be related to their ability to produce various types of feruloyl esterases, enzymes involved in the biodegradation process of the cell-wall polymers (Giraud *et al.*, 2007).

In conclusion, the analysis of the three genomic fragments, corresponding to rRNA, β -tubulin and *lac3-1* gene regions, with respect to *Pycnoporus* species, could provide effective, essential molecular tools for the routine identification and comparison of strains in laboratory culture conditions. For the first time, the laccase gene *lac3-1* was used to infer the phylogeny of *Pycnoporus* species and could highlight enzyme functional diversity associated with biogeographical origin. Special attention was given to the closely related species *P. sanguineus* and *P. coccineus*, which display very similar characters but are geographically discontinuous populations, indicating that biogeography has played a strong role in determining evolutionary units in the genus *Pycnoporus*. The current defining of species in basidiomycetes is still frequently delicate and should combine molecular tools with classic morphological data and mating-type experiments.

Acknowledgements

The authors thank Prof K.A. To from the University of Hanoi and Dr M. Coussot of the Centre International de Recherche Agronomique pour le Développement (CIRAD, France) for specimens of *P. sanguineus* from Vietnam and French New Caledonia, respectively. The authors also are grateful to Prof. Regis Courtecuisse (Université de Lille II, France) who provided the expertise in identification of *Pycnoporus* species collected on the French territories. The authors also sincerely thank Dr Stéphane Welti for valuable suggestions and Dr Jean-Guy Berrin for practical assistance. This work was supported financially by the Commission of the European Communities, specifically

the BIORENEW project (NMP2-CT-2006-026456 'White biotechnology for added value products from renewable plant polymers: design of tailor-made biocatalysts and new industrial bioprocesses').

References

- Baldrian P (2006) Fungal laccases occurrence and properties. *FEMS Microbiol Rev* **30**: 215–242.
- Begerow D, Beate J & Oberwinkler F (2004) Evolutionary relationships among β-tubulin gene sequences of basidiomycetous fungi. *Mycol Res* **108**: 1257–1263.
- Brijwani K, Rigdon A & Vadlani PV (2010) Fungal laccases: production, function, and applications in food processing. *Enzyme Res* 2010: 149748.
- Courtecuisse R, Samuels GJ, Hoff M, Rossman AY, Cremers G, Huhndorf SM & Stephenson SL (1996) Check-list of fungi from French Guiana: Studies in the flora of the Guianas, No. 80. *Mycotaxon* **LVII**: 1–85.
- Eggert C, Temp U & Eriksson KEL (1996) The lignolytic system of the white-rot fungus *Pycnoporus cinnabarinus*: purification and characterization of the laccase. *Appl Environ Microbiol* **62**: 1151–1158.
- Eggert C, Lafayette P, Temp U, Eriksson KEL & Dean JFD (1998) Molecular analysis of a laccase gene from the whiterot fungus *Pycnoporus cinnabarinus*. *Appl Environ Microbiol* **64**: 1766–1772.
- Fries EM (1851) Novae symbolae mycologicae. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser **31**: 17–136.
- Froslev TG, Matheny PB & Hibbett DS (2005) Lower level relationships in the mushroom genus *Cortinarius* (Basidiomycota, Agaricales): a comparison of RPB1, RPB2, and ITS phylogenies. *Mol Phylogenet Evol* **37**: 602–618.
- Gianfreda L, Xu F & Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. *Bioremediat J* **3**: 1–25.
- Giraud F, Dupont J, Haon M, Bouzid O, Alibeu O, Navarro D, Sage L, Seigle-Murandi F, Asther M & Lesage-Meessen L (2007) Phylogenetic analysis of the Aspergillus niger aggregate in relation to feruloyl esterase activity. *Res Microbiol* 158: 413–419.
- Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P & Danchin EGJ (2005) FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. *BMC Bioinformatics* **6**: 198–219.
- Hatsch D, Phalip V & Jeltsch JM (2004) Use of genes encoding cellobiohydrolase-C and topoisomerase II as targets for phylogenetic analysis and identification of *Fusarium. Res Microbiol* **155**: 290–296.
- Herpoël I, Jeller H, Fang G, Petit-Conil M, Bourbonnais R, Robert JL, Asther M & Sigoillot JC (2002) Efficient enzymatic delignification of wheat straw pulp by a sequential xylanase-laccase treatment. *J Pulp Paper Sci* 28: 67–71.
- Hibbett DS, Binder M, Bischoff J *et al.* (2007) A higher-level phylogenetic classification of the fungi. *Mycol Res* **111**: 509–547.

- Higgins DG, Bleasby AJ & Fuchs R (1991) CLUSTAL W: improved software for multiple alignment. *Comput Appl Biosci* 8: 189–191.
- Hilden KS, Bortfeldt R, Hofrichter M, Hatakka A & Lundell TK (2008) Molecular characterization of the basidiomycete isolate *Nematoloma frowardii* b19 and its manganese peroxidase places the fungus in the corticoid genus *Phlebia*. *Microbiology* **154**: 2371–2379.
- Hu H, Jeewon R, Zhou D, Zhou T & Hyde KD (2007) Phylogenetic diversity of endophytic *Pestalotiopsis* species in *Pinus armandii* and *Ribes* spp.: evidence from rDNA and beta-tubulin gene phylogenies. *Fungal Divers* **24**: 1–22.
- Kamei I, Suhara H & Kondo R (2005) Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-*p*-dioxin. *Appl Microbiol Biotechnol* 69: 358–366.
- Karsten PA (1881) Enumeratio Boletinearum et Polyporearum Fennicarum, systemate novo dispositarum. *Rev Mycol*, **3**: 16–19.
- de Koker TH, Nakasone KK, Haarhof J & Burdsall HH (2003) Phylogenetic relationships of the genus *Phanerochaete* inferred from the internal transcribed spacer region. *Mycol Res* **107**: 1032–1040.
- Lamark J-B (1783) Agaricus ruber. Encycl Méth Bot (Paris) 1: 50.
- Li DZ (2008) Floristics and plant biogeography in China. *J Integr Plant Biol* **50**: 771–777.
- Lomascolo A, Cayol JL, Roche M, Guo L, Robert JL, Record E, Lesage-Meessen L, Ollivier B, Sigoillot JC & Asther M (2002) Molecular clustering of *Pycnoporus* strains from various geographic origins and isolation of monokaryotic strains for laccase hyperproduction. *Mycol Res* 106: 1193– 1203.
- Lomascolo A, Record E, Herpoël-Gimbert I, Delattre M, Robert JL, Georis J, Dauvrin T, Sigoillot JC & Asther M (2003) Overproduction of laccase by a monokaryotic strain of *Pycnoporus cinnabarinus* using ethanol as inducer. *J Appl Microbiol* 94: 618–624.
- Messerschmidt A & Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin: modelling and structural relationships. *Eur J Biochem* **187**: 341–352.
- Moncalvo J-M & Buchanan PK (2008) Molecular evidence for long distance dispersal across the southern hemisphere in the *Ganoderma applanatum-australe* species complex (Basidiomycota). *Mycol Res* **112**: 425–436.
- Nobles MK & Frew BP (1962) Studies in wood-inhabiting hymenomycetes. V. The genus *Pycnoporus* Karst. *Can J Bot* **40**: 987–1016.
- Otterbein L, Record E, Longhi S, Asther M & Moukha S (2000) Molecular cloning of the cDNA encoding laccase from *Pycnoporus cinnabarinus* I-937 and expression in *Pichia pastoris. Eur J Biochem* **267**: 1619–1625.
- Ryvarden L (1991) Genera of Polypores, nomenclature and taxonomy. *Synopsis Fungorum 5*. Fungiflora, Oslo.
- Ryvarden L & Gilbertson RL (1994) *Meripilus Tyromyces. European Polypores*, Part 2. Fungiflora, Oslo.

Ryvarden L & Johansen I (1980) A preliminary polypore flora of East Africa. *Synopsis Fungorum* 5. Fungiflora, Oslo.

- Schmitt I, Partida-Martinez LP, Winkler R, Voigt K, Einax E, Dolz F, Telle S, Wostemeyer J & Hertweck C (2008) Evolution of host resistance in a toxin-producing bacterialfungal alliance. *ISME J* 2: 632–641.
- Shen Q, Geiser DM & Royse DJ (2002) Molecular phylogenetic analysis of *Grifola frondosa* (maitake) reveals a species partition separating eastern North American and Asian strains. *Mycologia* **94**: 472–482.
- Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel CAMJJ, Fournel A, Sigoillot JC & Asther M (2004) Natural and recombinant fungal laccases for paper pulp bleaching. *Appl Microbiol Biotechnol* 64: 346–352.
- Takhtajan A (1986) *Floristic Regions of the World*. University of California Press, Berkeley.
- Thon MR & Royse DJ (1999) Partial β -tubulin gene sequences for evolutionary studies in the Basidiomycotina. *Mycologia* **91**: 468–474.
- Tomšovský M, Kolaří M, Pažoutová S & Homolka L (2006) Molecular phylogeny of European *Trametes* (Basidiomycetes, Polyporales) species based on LSU and ITS (nrDNA) sequences. *Nova Hedwigia* 82: 269–280.
- Udvardy MDF (1975) A Classification of the Biogeographical Provinces of the World. IUCN occasional paper No. 1. International Union for Conservation of Nature and Natural Resources, Morges.
- Uzan E, Nousiainen P, Balland V, Sipila J, Piumi F, Navarro D, Asther M, Record E & Lomascolo A (2010) High-redox potential laccases from the ligninolytic fungi *Pycnoporus coccineus* and *P. sanguineus* suitable for white biotechnology: from gene cloning to enzyme characterization and applications. *J Appl Microbiol* **108**: 2199–2213.
- Uzan E, Portet B, Lubrano C, Milesi S, Favel A, Lesage-Meessen L & Lomascolo A (2011) *Pycnoporus* laccasemediated bioconversion of rutin to oligomers suitable for

biotechnology applications. *Appl Microbiol Biotechnol* **90**: 97–105.

- Wang Z, Binder M, Dai YC & Hibbett DS (2004) Phylogenetic relationships of *Sparassis* inferred from nuclear and mitochondrial DNA and RNA polymerase sequences. *Mycologia* 96: 1015–1029.
- White TJ, Bruns T, Lee S & Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protocols: A Guide to Methods and Applications* (Innis MA, Gelfand DH, Sninsky JJ & White TJ, eds), pp. 315–322. Academic Press, San Diego.
- Yao YJ, Pegler DN & Chase MW (2005) Molecular variation in the *Postia caesia* complex. *FEMS Microbiol Lett* **242**: 109–116.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

File S1. Alignment of the ITS1-5.8S rRNA gene-ITS2 regions (467 nt positions) for the 36 *P. cinnabarinus*, *P. sanguineus* and *P. coccineus* strains studied.

File S2. Alignment of partial regions (263 nt positions) of the gene coding for β -tubulin, for the 36 *P. cinnabarinus*, *P. sanguineus* and *P. coccineus* strains studied.

File S3. Alignment of partial regions (1185 nt positions) of the gene coding for the laccase isoenzyme Lac I, for the 36 *P. cinnabarinus*, *P. sanguineus* and *P. coccineus* strains studied.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.